

Inverse Functions and Relations

Din re fu Ga	OBJECTIVES Determine inverses of relations and functions. Graph functions and their inverses.	METEOROLOGY The hottest temperature ever recorded in Montana was 117° F on July 5, 1937. To convert this temperature to degrees Celsius C, subtract 32° from the Fahrenheit temperature F and then
		multiply the result by $\frac{5}{9}$. The formula for this conversion is $C = \frac{5}{9}(F - 32)$. The coldest temperature ever recorded in Montana was -57° C on January 20, 1954. To convert this temperature to Fahrenheit, multiply the Celsius temperature by $\frac{9}{5}$ and then add 32°. The formula for this conversion is $F = \frac{9}{5}C + 32$.
		The temperature conversion formulas are examples of inverse functions . Relations also have inverses, and these inverses are themselves relations.

Inverse	Two relations are inverse relations if and only if one relation contains the
Relations	element (b , a) whenever the other relation contains the element (a , b).

If f(x) denotes a function, then $f^{-1}(x)$ denotes the inverse of f(x). However, $f^{-1}(x)$ may not necessarily be a function. To graph a function or relation and its inverse, you switch the *x*- and *y*-coordinates of the ordered pairs of the function. This results in graphs that are symmetric to each other with respect to the line y = x.

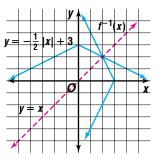
Example

Graph $f(x) = -\frac{1}{2}|x| + 3$ and its inverse.

To graph the function, let y = f(x). To graph $f^{-1}(x)$, interchange the *x*- and *y*-coordinates of the ordered pairs of the function.

Note that the domain of one relation or function is the range of the inverse and vice versa.

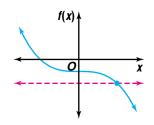
$f(\mathbf{x}) = -\frac{1}{2} \mathbf{x} + 3$			f ⁻¹ (x)			
x	f (x)		x	f ⁻¹ (x)		
-3	1.5		1.5	-3		
-2	2		2	-2		
-1	2.5		2.5	-1		
0	3		3	0		
1	2.5		2.5	1		
2	2		2	2		
3	1.5		1.5	3		
	1					

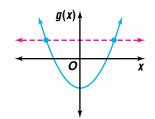


The graph of $f^{-1}(x)$ is the reflection of f(x) over the line y = x.

Note that the inverse in Example 1 is not a function because it fails the vertical line test.

You can use the **horizontal line test** to determine if the inverse of a relation will be a function. If every horizontal line intersects the graph of the relation in at most one point, then the inverse of the relation is a function.





The inverse of f(x) is a function.

The inverse of g(x) is not a function.

You can find the inverse of a relation algebraically. First, let y = f(x). Then interchange *x* and *y*. Finally, solve the resulting equation for *y*.

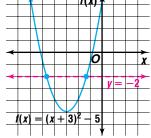
Example

2 Consider $f(x) = (x + 3)^2 - 5$.

- a. Is the inverse of f(x) a function?
- b. Find $f^{-1}(x)$.

c. Graph f(x) and $f^{-1}(x)$ using a graphing calculator.

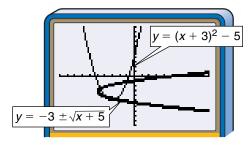
- **a.** Since the line y = -2 intersects the graph of f(x) at more than one point, the function fails the horizontal line test. Thus, the inverse of f(x) is not a function.
- **b.** To find $f^{-1}(x)$, let y = f(x) and interchange x and y. Then, solve for y.



 $y = (x + 3)^{2} - 5$ $x = (y + 3)^{2}$ $x + 5 = (y + 3)^{2}$ $x + 5 = (y + 3)^{2}$ x + 5 = y + 3 $y = -3 \pm \sqrt{x + 5}$ $x = -3 \pm \sqrt{x + 5}$

CONTENTS

c. To graph f(x) and its inverse, enter the equations $y = (x + 3)^2 - 5$, $y = -3 + \sqrt{x + 5}$, and $y = -3 - \sqrt{x + 5}$ in the same viewing window.



[-15.16, 15.16] scl: 2 by [-10, 10] scl: 2

You can differentiate the appearance of your graphs by highlighting the symbol in front of each equation in the Y = list and pressing ENTER to select line (\), thick (\), or dot (\cdot .).

Lesson 3-4 Inverse Functions and Relations 153

You can graph a function by using the parent graph of an inverse function.

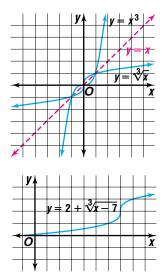
Example

3 Graph $y = 2 + \sqrt[3]{x-7}$.

The parent function is $y = \sqrt[3]{x}$ which is the inverse of $y = x^3$.

To graph $y = \sqrt[3]{x}$, start with the graph of $y = x^3$. Reflect the graph over the line y = x.

To graph $y = 2 + \sqrt[3]{x-7}$, translate the reflected graph 7 units to the right and 2 units up.



To find the inverse of a function, you use an **inverse process** to solve for *y* after switching variables. This inverse process can be used to solve many real-world problems.

4 FINANCE When the Garcias decided to begin investing, their financial advisor instructed them to set a goal. Their net pay is about 65% of their gross pay. They decided to subtract their monthly food allowance from their monthly net pay and then invest 10% of the remainder.

- a. Write an equation that gives the amount invested I as a function of their monthly gross pay G given that they allow \$450 per month for food.
 - **b.** Determine the equation for the inverse process and describe the real-world situation it models.
 - c. Determine the gross pay needed in order to invest \$100 per month.

LCEOL C

a. One model for the amount they will invest is as follows.

investment	equals	<i>10%</i> ↓	of ↓	$\begin{pmatrix} 65\% \text{ of} \\ gross pay \\ \downarrow \end{pmatrix}$	\downarrow	$\begin{pmatrix} food \\ allowance \end{pmatrix}$		
Ι	=	0.10		(0.65 <i>G</i>	_	450)		
b. Solve for <i>G</i> .								
I = 0.10(0.65G - 450)								
10I =	Multiply each side by 10.							
10I + 450 =	Add 450 to each side.							
$\frac{10I + 450}{0.65} = 0.000$		Divide each side by 0.65.						

This equation models the gross pay needed to meet a monthly investment goal *I* with the given conditions.

c. Substituting 100 for *I* gives $G = \frac{10I + 450}{0.65}$, or about \$2231. So the Garcias need to earn a monthly gross pay of about \$2231 in order to invest \$100 per month.

Look Back

Refer to Lesson 1-2 to review the composition of two functions. If the inverse of a function is also a function, then a composition of the function and its inverse produces a unique result.

Consider f(x) = 3x - 2 and $f^{-1}(x) = \frac{x+2}{3}$. You can find functions $[f \circ f^{-1}](x)$ and $[f^{-1} \circ f](x)$ as follows.

$$[f \circ f^{-1}](x) = f\left(\frac{x+2}{3}\right) \qquad f^{-1}(x) = \frac{x+2}{3} \\ = 3\left(\frac{x+2}{3}\right) - 2 f(x) = 3x - 2 \\ = x \end{aligned} \qquad \begin{bmatrix} f^{-1} \circ f \end{bmatrix}(x) = f^{-1}(3x-2) \quad f(x) = 3x - 2 \\ = \frac{(3x-2)+2}{3} \quad f^{-1}(x) = \frac{x+2}{3} \\ = x \end{aligned}$$

This leads to the formal definition of inverse functions.

Inverse	Two functions, f and f^{-1} , are inverse functions if and only if
Functions	$[f \circ f^{-1}][x] = [f^{-1} \circ f][x] = x.$

Example

5 Given f(x) = 4x - 9, find $f^{-1}(x)$, and verify that f and f^{-1} are inverse functions.

 $y = 4x - 9 \quad f(x) = y$ $x = 4y - 9 \quad Interchange x \text{ and } y.$ $x + 9 = 4y \quad Solve \text{ for } y.$ $\frac{x + 9}{4} = y$ $\frac{x + 9}{4} = f^{-1}(x) \quad Replace y \text{ with } f^{-1}(x).$ Now show that $[f \circ f^{-1}](x) = [f^{-1} \circ f](x) = x.$ $[f \circ f^{-1}](x) = f\left(\frac{x + 9}{4}\right) \qquad [f^{-1} \circ f](x) = f^{-1}(4x - 9)$ $= 4\left(\frac{x + 9}{4}\right) - 9 \qquad = \frac{(4x - 9) + 9}{4}$ = xSince $[f \circ f^{-1}](x) = [f^{-1} \circ f](x) = x, f \text{ and } f^{-1} \text{ are inverse functions.}$

CHECK FOR UNDERSTANDING

.....

Communicating Mathematics

Read and study the lesson to answer each question.

- **1. Write** an explanation of how to determine the equation for the inverse of the relation $y = \pm \sqrt{x-3}$.
- **2**. **Determine** the values of *n* for which $f(x) = x^n$ has an inverse that is a function. Assume that *n* is a whole number.

- **3. Find a counterexample** to this statement: The inverse of a function is also a function.
- **4**. **Show** how you know whether the inverse of a function is also a function without graphing the inverse.
- **5. You Decide** Nitayah says that the inverse of $y = 3 \pm \sqrt{x+2}$ cannot be a function because $y = 3 \pm \sqrt{x+2}$ is not a function. Is she right? Explain.

Guided Practice Graph each function and its inverse. **6.** f(x) = |x| + 1 **7.** $f(x) = x^3 + 1$ **8.** $f(x) = -(x - 3)^2 + 1$

Find $f^{-1}(x)$. Then state whether $f^{-1}(x)$ is a function.

9.
$$f(x) = -3x + 2$$
 10. $f(x) = \frac{1}{x^3}$ **11**. $f(x) = (x + 2)^2 + 6$

12. Graph the equation $y = 3 \pm \sqrt{x+1}$ using the parent graph $p(x) = x^2$.

- **13.** Given $f(x) = \frac{1}{2}x 5$, find $f^{-1}(x)$. Then verify that *f* and f^{-1} are inverse functions.
- **14. Finance** If you deposit \$1000 in a savings account with an interest rate of r compounded annually, then the balance in the account after 3 years is given by the function $B(r) = 1000(1 + r)^3$, where r is written as a decimal.
 - **a**. Find a formula for the interest rate, *r*, required to achieve a balance of *B* in the account after 3 years.
 - b. What interest rate will yield a balance of \$1100 after 3 years?

EXERCISES

Practice

Graph each function and its inverse.

15 . $f(x) = x + 2$	16 . $f(x) = 2x $	17 . $f(x) = x^3 - 2$				
18 . $f(x) = x^5 - 10$	19 . $f(x) = [\![x]\!]$	20 . <i>f</i> (<i>x</i>) = 3				
21 . $f(x) = x^2 + 2x + 4$	22. $f(x) = -(x+2)^2 - 5$	23 . $f(x) = (x + 1)^2 - 4$				
24. For $f(x) = x^2 + 4$, find $f^{-1}(x)$. Then graph $f(x)$ and $f^{-1}(x)$.						

Find $f^{-1}(x)$. Then state whether $f^{-1}(x)$ is a function.

25.
$$f(x) = 2x + 7$$

26. $f(x) = -x - 2$
27. $f(x) = \frac{1}{x}$
28. $f(x) = -\frac{1}{x^2}$
29. $f(x) = (x - 3)^2 + 7$
30. $f(x) = x^2 - 4x + 3$
31. $f(x) = \frac{1}{x+2}$
32. $f(x) = \frac{1}{(x-1)^2}$
33. $f(x) = -\frac{2}{(x-2)^3}$
34. If $g(x) = \frac{3}{x^2 + 2x}$, find $g^{-1}(x)$.

Graph each equation using the graph of the given parent function.

35. $f(x) = \sqrt{x+5}, p(x) = x^2$ **36.** $y = 1 \pm \sqrt{x-2}, p(x) = x^2$ **37.** $f(x) = -2 - \sqrt[3]{x+3}, p(x) = x^3$ **38.** $y = 2\sqrt[5]{x-4}, p(x) = x^5$ Given f(x), find $f^{-1}(x)$. Then verify that f and f^{-1} are inverse functions.

CONTENTS

39.
$$f(x) = -\frac{2}{3}x + \frac{1}{6}$$
 40. $f(x) = (x - 3)^3 + 4$

156 Chapter 3 The Nature of Graphs

www.amc.glencoe.com/self_check_quiz

Applications and Problem Solving

- **41.** Analytic Geometry The function d(x) = |x 4| gives the distance between x and 4 on the number line.
 - **a**. Graph $d^{-1}(x)$.
 - **b.** Is $d^{-1}(x)$ a function? Why or why not?
 - **c**. Describe what $d^{-1}(x)$ represents. Then explain how you could have predicted whether $d^{-1}(x)$ is a function without looking at a graph.

- **42. Fire Fighting** The velocity *v* and maximum height *h* of water being pumped into the air are related by the equation $v = \sqrt{2gh}$ where *g* is the acceleration due to gravity (32 feet/second²).
 - **a.** Determine an equation that will give the maximum height of the water as a function of its velocity.
 - **b.** The Mayfield Fire Department must purchase a pump that is powerful enough to propel water 80 feet into the air. Will a pump that is advertised to project water with a velocity of 75 feet/second meet the fire department's needs? Explain.

43. Critical Thinking

- **a**. Give an example of a function that is its own inverse.
- **b**. What type of symmetry must the graph of the function exhibit?
- **c.** Would all functions with this type of symmetry be their own inverses? Justify your response.
- **44. Consumer Costs** A certain long distance phone company charges callers 10 cents for every minute or part of a minute that they talk. Suppose that you talk for *x* minutes, where *x* is any real number greater than 0.
 - **a**. Sketch the graph of the function C(x) that gives the cost of an *x*-minute call.
 - **b**. What are the domain and range of C(x)?
 - **c**. Sketch the graph of $C^{-1}(x)$.
 - **d**. What are the domain and range of $C^{-1}(x)$?
 - **e**. What real-world situation is modeled by $C^{-1}(x)$?
- **45. Critical Thinking** Consider the parent function $y = x^2$ and its inverse $y = \pm \sqrt{x}$. If the graph of $y = x^2$ is translated 6 units right and 5 units down, what must be done to the graph of $y = \pm \sqrt{x}$ to get a graph of the inverse of the translated function? Write an equation for each of the translated graphs.
- **46. Physics** The formula for the kinetic energy of a particle as a function of its mass *m* and velocity *v* is $KE = \frac{1}{2}mv^2$.
 - **a**. Find the equation for the velocity of a particle based on its mass and kinetic energy.
 - **b.** Use your equation from part a to find the velocity in meters per second of a particle of mass 1 kilogram and kinetic energy 15 joules.
 - **c.** Explain why the velocity of the particle is not a function of its mass and kinetic energy.

CONTENTS

- **47. Cryptography** One way to encode a message is to assign a numerical value to each letter of the alphabet and encode the message by assigning each number to a new value using a mathematical relation.
 - a. Does the encoding relation have to be a function? Explain.
 - **b**. Why should the graph of the encoding function pass the horizontal line test?
 - **c.** Suppose a value was assigned to each letter of the alphabet so that 1 = A, 2 = B, 3 = C, ..., 26 = Z, and a message was encoded using the relation $c(x) = -2 + \sqrt{x+3}$. What function would decode the message?
 - d. Try this decoding function on the following message:

1	2.899	2.123	0.449	2.796	1.464	2.243	2.123	2.690
0	2.583	0.828	1	2.899	2.123			

Mixed Review 48. Solve the inequality $|2x + 4| \le 6$. (Lesson 3-3)

49. State whether the figure at the right has point symmetry, line symmetry, neither, or both. *(Lesson 3-1)*

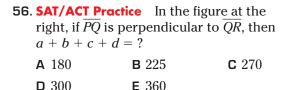
- **50. Retail** Arturo Alvaré, a sales associate at a paint store, plans to mix as many gallons as possible of colors A and B. He has 32 units of blue dye and 54 units of red dye. Each gallon of color A requires 4 units of blue dye and 1 unit of red dye. Each gallon of color B requires 1 unit of blue dye and 6 units of red dye. Use linear programming to answer the following questions. *(Lesson 2-7)*
 - **a.** Let *a* be the number of gallons of color A and let *b* be the number of gallons of color B. Write the inequalities that describe this situation.
 - **b**. Find the maximum number of gallons possible.
- **51.** Solve the system of equations 4x + 2y = 10, y = 6 x by using a matrix equation. *(Lesson 2-5)*

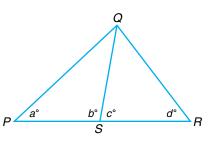
52. Find the product $\frac{1}{2} \begin{bmatrix} 9 & -3 \\ -6 & 6 \end{bmatrix}$. *(Lesson 2-3)*

- **53.** Graph y < -2x + 8. (*Lesson 1-8*)
- **54.** Line ℓ_1 has a slope of $\frac{1}{4}$, and line ℓ_2 has a slope of 4. Are the lines *parallel*, *perpendicular*, or *neither*? (Lesson 1-5)

CONTENTS

55. Write the slope-intercept form of the equation of the line that passes through points at (0, 7) and (5, 2). (*Lesson 1-4*)





Extra Practice See p. A30.