Solving Trigonometric Equations

OBJECTIVE

- Solve trigonometric equations and inequalities.

ENTERTAINMENT
When you ride a Ferris wheel that has a diameter of 40 meters and turns at a rate of 1.5 revolutions per minute, the height above the ground, in meters, of your seat after t minutes can be modeled by the equation $h=21-20 \cos 3 \pi t$. How long after the ride starts will your seat first
 be 31 meters above the ground? This problem will be solved in Example 4.

So far in this chapter, we have studied a special type of trigonometric equation called an identity. Trigonometric identities are equations that are true for all values of the variable for which both sides are defined. In this lesson, we will examine another type of trigonometric equation. These equations are true for only certain values of the variable. Solving these equations resembles solving algebraic equations.

Most trigonometric equations have more than one solution. If the variable is not restricted, the periodic nature of trigonometric functions will result in an infinite number of solutions. Also, many trigonometric expressions will take on a given value twice every period.

If the variable is restricted to two adjacent quadrants, a trigonometric equation will have fewer solutions. These solutions are called principal values. For $\sin x$ and $\tan x$, the principal values are in Quadrants I and IV. So x is in the interval $-90^{\circ} \leq x \leq 90^{\circ}$. For $\cos x$, the principal values are in Quadrants I and II, so x is in the interval $0^{\circ} \leq x \leq 180^{\circ}$.

Example $\begin{aligned} & \text { Solve } \sin x \cos x-\frac{1}{2} \cos x=0 \text { for principal values of } x \text {. Express solutions } \\ & \text { in degrees. }\end{aligned}$

```
sin}x\operatorname{cos}x-\frac{1}{2}\operatorname{cos}x=
```

 \(\cos x\left(\sin x-\frac{1}{2}\right)=0 \quad\) Factor.
 $\begin{aligned} \cos x & =0 & \text { or } \quad \sin x-\frac{1}{2}=0 \quad \text { Set each factor equal to } 0 .\end{aligned}$
$x=90^{\circ}$
$\sin x=\frac{1}{2}$
$x=30^{\circ}$

The principal values are 30° and 90°.

If an equation cannot be solved easily by factoring, try writing the expressions in terms of only one trigonometric function. Remember to use your knowledge of identities.

Example 2) Solve $\cos ^{2} x-\cos x+1=\sin ^{2} x$ for $0 \leq x<2 \pi$.

This equation can be written in terms of $\cos x$ only.

$$
\begin{array}{rlrl}
\cos ^{2} x-\cos x+1 & =\sin ^{2} x & & \\
\cos ^{2} x-\cos x+1 & =1-\cos ^{2} x & & \text { Pythagorean identity: } \sin ^{2} x=1-\cos ^{2} x \\
2 \cos ^{2} x-\cos x & =0 & & \\
\begin{aligned}
\cos x(2 \cos x-1) & =0 & & \text { Factor. } \\
\cos x=0 & \text { or } & 2 \cos x-1 & =0 \\
x=\frac{\pi}{2} \text { or } x=\frac{3 \pi}{2} & & \cos x & =\frac{1}{2} \\
& x & =\frac{\pi}{3} \text { or } x & =\frac{5 \pi}{3}
\end{aligned}
\end{array}
$$

The solutions are $\frac{\pi}{3}, \frac{\pi}{2}, \frac{3 \pi}{2}$, and $\frac{5 \pi}{3}$.

As indicated earlier, most trigonometric equations have infinitely many solutions. When all of the values of x are required, the solution should be represented as $x+360 k^{\circ}$ or $x+2 \pi k$ for $\sin x$ and $\cos x$ and $x+180 k^{\circ}$ or $x+\pi k$ for $\tan x$, where k is any integer.

Example 3 Solve $2 \sec ^{2} \boldsymbol{x}-\tan ^{4} \boldsymbol{x}=\mathbf{- 1}$ for all real values of \boldsymbol{x}.

A Pythagorean identity can be used to write this equation in terms of $\tan x$ only.

$$
\begin{array}{rlr}
2 \sec ^{2} x-\tan ^{4} x=-1 & \\
2\left(1+\tan ^{2} x\right)-\tan ^{4} x=-1 & \text { Pythagorean identity: } \sec ^{2} x=1+\tan ^{2} x \\
2+2 \tan ^{2} x-\tan ^{4} x=-1 & \text { Simplify. } & \\
\tan ^{4} x-2 \tan ^{2} x-3=0 & \\
\left(\tan ^{2} x-3\right)\left(\tan ^{2} x+1\right)=0 & \text { Factor. } \\
\tan ^{2} x-3=0 & \text { or } & \tan ^{2} x+1=0 \\
\tan ^{2} x=3 & \tan ^{2} x=-1 & \text { This part gives no } \\
\tan x= \pm \sqrt{3} & \begin{array}{l}
\text { solutions since } \\
\tan ^{2} x \geq 0 .
\end{array} \\
x=\frac{\pi}{3}+\pi k \text { or } x=-\frac{\pi}{3}+\pi k, \text { where } k \text { is any integer. }
\end{array}
$$

The solutions are $\frac{\pi}{3}+\pi k$ and $-\frac{\pi}{3}+\pi k$.

There are times when a general expression for all of the solutions is helpful for determining a specific solution.

Example 4 ENTERTAINMENT Refer to the application at the beginning of the lesson.

 How long after the Ferris wheel starts will your seat first be 31 meters above the ground?
$h=21-20 \cos 3 \pi t$
$31=21-20 \cos 3 \pi t \quad$ Replace h with 31 .
$-\frac{1}{2}=\cos 3 \pi t$
$\begin{array}{llll}\frac{2 \pi}{3}+2 \pi k=3 \pi t & \text { or } & \frac{4 \pi}{3}+2 \pi k=3 \pi t & \text { where } k \text { is any integer } \\ \frac{2}{9}+\frac{2}{3} k=t & \text { or } & \frac{4}{9}+\frac{2}{3} k=t\end{array}$
The least positive value for t is obtained by letting $k=0$ in the first expression. Therefore, $t=\frac{2}{9}$ of a minute or about 13 seconds.

You can solve some trigonometric inequalities using the same techniques as for algebraic inequalities. The unit circle can be useful when deciding which angles to include in the answer.

Example (5) Solve $2 \sin \theta+1>0$ for $0 \leq \theta<2 \pi$.

$$
2 \sin \theta+1>0
$$

$$
\sin \theta>-\frac{1}{2} \quad \text { Solve for } \sin \theta
$$

In terms of the unit circle, we need to find points with y-coordinates greater than $-\frac{1}{2}$. The values of θ for which $\sin \theta=-\frac{1}{2}$ are $\frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$. The figure shows that the solution of the inequality is $0 \leq \theta<\frac{7 \pi}{6}$ or $\frac{11 \pi}{6}<\theta<2 \pi$.

GRAPHING CALCULATOR EXPLORATION

Some trigonometric equations and inequalities are difficult or impossible to solve with only algebraic methods. A graphing calculator is helpful in such cases.

TRY THESE Graph each side of the equation as a separate function.

1. $\sin x=2 \cos x$ for $0 \leq x \leq 2 \pi$
2. $\tan 0.5 x=\cos x$ for $-2 \pi \leq x \leq 2 \pi$
3. Use the CALC menu to find the intersection point(s) of the graphs in Exercises 1 and 2.

WHAT DO YOU THINK?

4. What do the values in Exercise 3 represent? How could you verify this conjecture?
5. Graph $y=2 \cos x-\sin x$ for $0 \leq x \leq 2 \pi$.
a. How could you use the graph to solve the equation $\sin x=2 \cos x$? How does this solution compare with those found in Exercise 3?
b. What equation would you use to apply this method to $\tan 0.5 x=\cos x$?

CHECK FOR UNDERSTANDING

Communicating

 Mathematics
Guided Practice

Solve each equation for principal values of \boldsymbol{x}. Express solutions in degrees.
5. $2 \sin x+1=0$
6. $2 \cos x-\sqrt{3}=0$

Solve each equation for $0^{\circ} \leq x<360^{\circ}$.
7. $\sin x \cot x=\frac{\sqrt{3}}{2}$
8. $\cos 2 x=\sin ^{2} x-2$

Solve each equation for $0 \leq x<2 \pi$.
9. $3 \tan ^{2} x-1=0$
10. $2 \sin ^{2} x=5 \sin x+3$

Solve each equation for all real values of x.
11. $\sin ^{2} 2 x+\cos ^{2} x=0$
12. $\tan ^{2} x+2 \tan x+1=0$
13. $\cos ^{2} x+3 \cos x=-2$
14. $\sin 2 x-\cos x=0$
15. Solve $2 \cos \theta+1<0$ for $0 \leq \theta<2 \pi$.
16. Physics The work done in moving an object through a displacement of d meters is given by $W=F d \cos \theta$, where θ is the angle between the displacement and the force F exerted. If Lisa does 1500 joules of work while exerting a 100-newton force over 20 meters, at what angle was she
 exerting the force?

EXERCISES

Practice \quad Solve each equation for principal values of x. Express solutions in degrees.
17. $\sqrt{2} \sin x-1=0$
18. $2 \cos x+1=0$
19. $\sin 2 x-1=0$
20. $\tan 2 x-\sqrt{3}=0$
21. $\cos ^{2} x=\cos x$
22. $\sin x=1+\cos ^{2} x$

Solve each equation for $0^{\circ} \leq x<360^{\circ}$.
23. $\sqrt{2} \cos x+1=0$
25. $\sin x \tan x-\sin x=0$
27. $\sin 2 x=-\sin x$
24. $\cos x \tan x=\frac{1}{2}$
26. $2 \cos ^{2} x+3 \cos x-2=0$
28. $\cos \left(x+45^{\circ}\right)+\cos \left(x-45^{\circ}\right)=\sqrt{2}$
29. Find all solutions to $2 \sin \theta \cos \theta+\sqrt{3} \sin \theta=0$ in the interval $0^{\circ} \leq \theta<360^{\circ}$.

Solve each equation for $0 \leq x<2 \pi$.
30. $(2 \sin x-1)\left(2 \cos ^{2} x-1\right)=0$
31. $4 \sin ^{2} x+1=-4 \sin x$
32. $\sqrt{2} \tan x=2 \sin x$
33. $\sin x=\cos 2 x-1$
34. $\cot ^{2} x-\csc x=1$
35. $\sin x+\cos x=0$
36. Find all values of θ between 0 and 2π that satisfy $-1-3 \sin \theta=\cos 2 \theta$.

Solve each equation for all real values of \boldsymbol{x}.
37. $\sin x=-\frac{1}{2}$
38. $\cos x \tan x-2 \cos ^{2} x=-1$
39. $3 \tan ^{2} x=\sqrt{3} \tan x$
40. $2 \cos ^{2} x=3 \sin x$
41. $\frac{1}{\cos x-\sin x}=\cos x+\sin x$
42. $2 \tan ^{2} x-3 \sec x=0$
43. $\sin x \cos x=\frac{1}{2}$
44. $\cos ^{2} x-\sin ^{2} x=\frac{\sqrt{3}}{2}$
45. $\sin ^{4} x-1=0$
46. $\sec ^{2} x+2 \sec x=0$
47. $\sin x+\cos x=1$
48. $2 \sin x+\csc x=3$

Solve each inequality for $0 \leq \theta<2 \pi$.
49. $\cos \theta \leq-\frac{\sqrt{3}}{2}$
50. $\cos \theta-\frac{1}{2}>0$
51. $\sqrt{2} \sin \theta-1<0$

Graphing Calculator

Applications and Problem Solving

Solve each equation graphically on the interval $0 \leq x<2 \pi$.
52. $\tan x=0.5$
53. $\sin x-\frac{x}{2}=0$
54. $\cos x=3 \sin x$
55. Optics When light passes through a small slit, it is diffracted. The angle θ subtended by the first diffraction minimum is related to the wavelength λ of the light and the width D of the slit by the equation $\sin \theta=\frac{\lambda}{D}$. Consider light of wavelength 550 nanometers ($5.5 \times 10^{-7} \mathrm{~m}$). What is the angle subtended by the first diffraction minimum when the light passes through a slit of width

Intensity of light 3 millimeters?
56. Critical Thinking Solve the inequality $\sin 2 x<\sin x$ for $0 \leq x<2 \pi$ without a calculator.
57. Physics The range of a projectile that is launched with an initial velocity v at an angle of θ with the horizontal is given by $R=\frac{v^{2}}{g} \sin 2 \theta$, where g is the acceleration due to gravity or 9.8 meters per second squared. If a projectile is launched with an initial velocity of 15 meters per second, what angle is required to achieve a range of 20 meters?

58. Gemology The sparkle of a diamond is created by refracted light. Light travels at different speeds in different mediums. When light rays pass from one medium to another in which they travel at a different velocity, the light is bent, or refracted. According to Snell's Law, $n_{1} \sin i=n_{2} \sin r$, where n_{1} is the index of refraction of the medium the light is exiting, n_{2} is the index of refraction of the medium the light is entering, i is the angle of incidence, and r is the angle of refraction.
a. The index of refraction of a diamond is 2.42 , and the index of refraction of air is 1.00 . If a beam of light strikes a diamond at an angle of 35°, what is the angle of refraction?
b. Explain how a gemologist might use Snell's Law to determine if a diamond is genuine.
59. Music A wave traveling in a guitar string can be modeled by the equation $D=0.5 \sin (6.5 x) \sin (2500 t)$, where D is the displacement in millimeters at the position x meters from the left end of the string at time t seconds. Find the first positive time when
 the point 0.5 meter from the left end has a displacement of 0.01 millimeter.
60. Critical Thinking How many solutions in the interval $0^{\circ} \leq x<360^{\circ}$ should you expect for the equation $a \sin (b x+c)+d=d+\frac{a}{2}$, if $a \neq 0$ and b is a positive integer?
61. Geometry The point $P(x, y)$ can be rotated θ degrees counterclockwise about the origin by multiplying the matrix $\left[\begin{array}{l}x \\ y\end{array}\right]$ on the left by the rotation matrix $R_{\theta}=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$. Determine the angle required to rotate the point $P(3,4)$ to the point $P^{\prime}(\sqrt{17}, 2 \sqrt{2})$.

Mixed Review
62. Find the exact value of $\cot 67.5^{\circ}$. (Lesson 7-4)
63. Find a numerical value of one trigonometric function of x if $\frac{\tan x}{\sec x}=\frac{\sqrt{2}}{5}$. (Lesson 7-2)
64. Graph $y=\frac{2}{3} \cos \theta$. (Lesson 6-4)
65. Transportation A boat trailer has wheels with a diameter of 14 inches. If the trailer is being pulled by a car going 45 miles per hour, what is the angular velocity of the wheels in revolutions per second? (Lesson 6-2)
66. Use the unit circle to find the value of $\csc 180^{\circ}$. (Lesson 5-3)
67. Determine the binomial factors of $x^{3}-3 x-2$. (Lesson $4-3$)
68. Graph $y=x^{3}-3 x+5$. Find and classify its extrema. (Lesson 3-6)
69. Find the values of x and y for which $\left[\begin{array}{r}3 x+4 \\ 6\end{array}\right]=\left[\begin{array}{l}16 \\ 2 y\end{array}\right]$ is true. (Lesson 2-3)
70. Solve the system $x-y+z=1,2 x+y+3 z=5$, and $x+y-z=11$. (Lesson 2-2)
71. Graph $g(x)=|x+3|$. (Lesson 1-7)
72. SAT/ACT Practice If $A C=6$, what is the area of triangle $A B C$?
A 1
B $\sqrt{6}$
C 3
D 6
E 12

The Renaissance Many mathematicians developed theories and applications of trigonometry during this time period. Nicolas Copernicus (1473-1543) published a book highlighting all the trigonometry necessary for astronomy at that time. During this period, the sine and versed sine were the most important trigonometric functions. Today, the versed sine, which is defined as versin $x=1-\cos x$, is rarely used.
Modern Era Mathematicians of the $1700 \mathrm{~s}, 1800 \mathrm{~s}$, and 1900 s worked on more sophisticated trigonometric ideas such as those relating to complex variables and hyperbolic functions. Renowned mathematicians who made contributions to trigonometry during this era were Bernoulli, Cotes, DeMoivre, Euler, and Lambert.

Today architects, such as Dennis Holloway of Santa Fe, New Mexico, use trigonometry in their daily work. Mr. Holloway is particularly interested in Native American designs. He uses trigonometry to determine the best angles for the walls of his buildings and for finding the correct slopes for landscaping.

ACTIVITIES

1. Draw a circle of radius 5 centimeters. Make a table of chords for angles of measure 10° through 90° (use 10° intervals). The table headings should be "angle measure" and "length of chord." (In the diagram of circle O , you are using $\angle A O B$ and chord $\overline{A B}$.)
2. Find out more about personalities referenced in this article and others who contributed to the history of trigonometry. Visit www.amc.glencoe.com
