7.1

What you should learn

GOAL 1 Evaluate *n*th roots of real numbers using both radical notation and rational exponent notation.

GOAL 2 Use nth roots to solve real-life problems, such as finding the total mass of a spacecraft that can be sent to Mars in Example 5.

Why you should learn it

▼ To solve real-life problems, such as finding the number of reptile and amphibian species that Puerto Rico can support in Ex. 67.

nth Roots and Rational Exponents

GOAL 1

EVALUATING NTH ROOTS

You can extend the concept of a square root to other types of roots. For instance, 2 is a cube root of 8 because $2^3 = 8$, and 3 is a fourth root of 81 because $3^4 = 81$. In general, for an integer n greater than 1, if $b^n = a$, then b is an **nth root of** a. An nth root of a is written as $\sqrt[n]{a}$, where n is the **index** of the radical.

You can also write an *n*th root of *a* as a power of *a*. For the particular case of a square root, suppose that $\sqrt{a} = a^k$. Then you can determine a value for *k* as follows:

$$\sqrt{a} \cdot \sqrt{a} = a$$
 Definition of square root $a^k \cdot a^k = a$ Substitute a^k for \sqrt{a} . $a^{2k} = a^1$ Product of powers property $2k = 1$ Set exponents equal when bases are equal. $k = \frac{1}{2}$ Solve for k .

Therefore, you can see that $\sqrt{a} = a^{1/2}$. In a similar way you can show that $\sqrt[3]{a} = a^{1/3}$ and $\sqrt[4]{a} = a^{1/4}$. In general, $\sqrt[n]{a} = a^{1/n}$ for any integer n greater than 1.

REAL NTH ROOTS

Let *n* be an integer greater than 1 and let *a* be a real number.

- If *n* is odd, then *a* has one real *n*th root: $\sqrt[n]{a} = a^{1/n}$
- If *n* is even and a > 0, then *a* has two real *n*th roots: $\pm \sqrt[n]{a} = \pm a^{1/n}$
- If *n* is even and a = 0, then *a* has one *n*th root: $\sqrt[n]{0} = 0^{1/n} = 0$
- If *n* is even and *a* < 0, then *a* has no real *n*th roots.

EXAMPLE 1

Finding nth Roots

Find the indicated real *n*th root(s) of *a*.

a.
$$n = 3$$
, $a = -125$

b.
$$n = 4$$
, $a = 16$

SOLUTION

a. Because n=3 is odd, a=-125 has one real cube root. Because $(-5)^3=-125$, you can write:

$$\sqrt[3]{-125} = -5$$
 or $(-125)^{1/3} = -5$

b. Because n = 4 is even and a = 16 > 0, 16 has two real fourth roots. Because $2^4 = 16$ and $(-2)^4 = 16$, you can write:

$$\pm \sqrt[4]{16} = \pm 2$$
 or $\pm 16^{1/4} = \pm 2$

A rational exponent does not have to be of the form $\frac{1}{n}$ where n is an integer greater than 1. Other rational numbers such as $\frac{3}{2}$ and $-\frac{1}{2}$ can also be used as exponents.

RATIONAL EXPONENTS

Let $a^{1/n}$ be an *n*th root of a, and let m be a positive integer.

•
$$a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m$$

•
$$a^{-m/n} = \frac{1}{a^{m/n}} = \frac{1}{(a^{1/n})^m} = \frac{1}{(\sqrt[n]{a})^m}, a \neq 0$$

Evaluating Expressions with Rational Exponents

a.
$$9^{3/2} = (\sqrt{9})^3 = 3^3 = 27$$

Using radical notation

$$9^{3/2} = (9^{1/2})^3 = 3^3 = 27$$

 $9^{3/2} = (9^{1/2})^3 = 3^3 = 27$ Using rational exponent notation

b.
$$32^{-2/5} = \frac{1}{32^{2/5}} = \frac{1}{(\sqrt[5]{32})^2} = \frac{1}{2^2} = \frac{1}{4}$$
 Using radical notation

$$32^{-2/5} = \frac{1}{32^{2/5}} = \frac{1}{(32^{1/5})^2} = \frac{1}{2^2} = \frac{1}{4}$$
 Using rational exponent notation

When using a graphing calculator to approximate an nth root, you may have to rewrite the *n*th root using a rational exponent. Then use the calculator's power key.

EXAMPLE 3 Approximating a Root with a Calculator

Use a graphing calculator to approximate $(\sqrt[4]{5})^3$.

SOLUTION First rewrite $(\sqrt[4]{5})^3$ as $5^{3/4}$. Then enter the following:

Display: (3.343701525)

 $(\sqrt[4]{5})^3 \approx 3.34$

To solve simple equations involving x^n , isolate the power and then take the *n*th root of each side.

EXAMPLE 4 Solving Equations Using nth Roots

a.
$$2x^4 = 162$$

 $x^4 = 81$

$$x = \pm \sqrt[4]{81}$$

$$x = \pm 3$$

b.
$$(x-2)^3 = 10$$

$$x - 2 = \sqrt[3]{10}$$

$$x = \sqrt[3]{10} + 2$$

$$x \approx 4.15$$

STUDENT HELP

calculator in Example 3, replace mith and replace ENTER WITH .

Study Tip

To use a scientific

Go to classzone.com

USING NTH ROOTS IN REAL LIFE

EXAMPLE 5

Evaluating a Model with nth Roots

The total mass M (in kilograms) of a spacecraft that can be propelled by a magnetic sail is, in theory, given by

$$M = \frac{0.015m^2}{fd^{4/3}}$$

where m is the mass (in kilograms) of the magnetic sail, f is the drag force (in newtons) of the spacecraft, and d is the distance (in astronomical units) to the sun. Find the total mass of a spacecraft that can be sent to Mars using m = 5000 kg, f = 4.52 N, and

 $d=1.52~\mathrm{AU}$. Source: Journal of Spacecraft and Rockets

Artist's rendition of a magnetic sail

SOLUTION

$$M = \frac{0.015m^2}{fd^{4/3}}$$
 Write model for total mass.
 $= \frac{0.015(5000)^2}{4.52(1.52)^{4/3}}$ Substitute for *m*, *f*, and *d*.
 $\approx 47,500$ Use a calculator.

The spacecraft can have a total mass of about 47,500 kilograms. (For comparison, the liftoff weight for a space shuttle is usually about 2,040,000 kilograms.)

EXAMPLE 6

Solving an Equation Using an nth Root

NAUTICAL SCIENCE The *Olympias* is a reconstruction of a trireme, a type of Greek galley ship used over 2000 years ago. The power P (in kilowatts) needed to propel the *Olympias* at a desired speed s (in knots) can be modeled by this equation:

$$P = 0.0289s^3$$

A volunteer crew of the *Olympias* was able to generate a maximum power of about 10.5 kilowatts. What was their greatest speed? ▶ Source: Scientific American

SOLUTION

$$P=0.0289s^3$$
 Write model for power.
 $10.5=0.0289s^3$ Substitute 10.5 for P .
 $363\approx s^3$ Divide each side by 0.0289.
 $\sqrt[3]{363}\approx s$ Take cube root of each side.
 $7\approx s$ Use a calculator.

The greatest speed attained by the *Olympias* was approximately 7 knots (about 8 miles per hour).

Page

GUIDED PRACTICE

Vocabulary Check ✓

Go to classzone.com

Concept Check ✓

- 1. What is the index of a radical?
- **2. LOGICAL REASONING** Let *n* be an integer greater than 1. Tell whether the given statement is always true, sometimes true, or never true. Explain.

a. If
$$x^n = a$$
, then $x = \sqrt[n]{a}$.

b.
$$a^{1/n} = \frac{1}{a^n}$$

3. Try to evaluate the expressions $-\sqrt[4]{625}$ and $\sqrt[4]{-625}$. Explain the difference in your results.

Skill Check v

Evaluate the expression.

4.
$$\sqrt[4]{81}$$

5.
$$-(49^{1/2})$$
 6. $(\sqrt[3]{-8})^5$ **7.** $3125^{2/5}$

6.
$$(\sqrt[3]{-8})^{\frac{5}{2}}$$

Solve the equation.

8.
$$x^3 = 125$$

9.
$$3x^5 = -3$$

10.
$$(x + 4)^2 = 0$$

10.
$$(x + 4)^2 = 0$$
 11. $x^4 - 7 = 9993$

12. SHOT PUT The shot (a metal sphere) used in men's shot put has a volume of about 905 cubic centimeters. Find the radius of the shot. (Hint: Use the formula $V = \frac{4}{3}\pi r^3$ for the volume of a sphere.)

RACTICE AND APPLICATIONS

STUDENT HELP

Extra Practice to help you master skills is on p. 949.

USING RATIONAL EXPONENT NOTATION Rewrite the expression using rational exponent notation.

13.
$$\sqrt[4]{14}$$

14.
$$\sqrt[3]{11}$$

15.
$$(\sqrt[7]{5})^2$$

16.
$$(\sqrt[9]{16})^5$$

17.
$$(\sqrt[8]{2})^{11}$$

USING RADICAL NOTATION Rewrite the expression using radical notation.

FINDING NTH ROOTS Find the indicated real *n*th root(s) of *a*.

23.
$$n = 2$$
, $a = 100$

24.
$$n = 4$$
, $a = 0$

25.
$$n = 3$$
, $a = -8$

26.
$$n = 7$$
, $a = 128$

27.
$$n = 6$$
, $a = -1$

28.
$$n = 5$$
, $a = 0$

EVALUATING EXPRESSIONS Evaluate the expression without using a calculator.

29.
$$\sqrt[3]{64}$$

30.
$$\sqrt[3]{-1000}$$

31.
$$-\sqrt[6]{64}$$

32.
$$4^{-1/2}$$

34.
$$-(256^{1/4})$$

35.
$$(\sqrt[4]{16})^2$$

36.
$$(\sqrt[3]{-27})^{-4}$$

37.
$$(\sqrt[6]{0})^3$$

38.
$$-(25^{-3/2})$$

40.
$$(-125)^{-2/3}$$

STUDENT HELP

► HOMEWORK HELP

Example 6: Exs. 65–67

41.
$$\sqrt[5]{-16,807}$$

47.
$$(\sqrt[3]{112})^{-4}$$

42.
$$\sqrt[9]{1124}$$

45.
$$10^{-1/4}$$

48.
$$(\sqrt[7]{-280})^3$$

49.
$$(\sqrt[6]{6})^2$$

43. $\sqrt[8]{65.536}$

46. $-(1331^{1/3})$

Go to classzone.com

53.
$$x^5 = 243$$

54.
$$6x^3 = -1296$$

55.
$$x^6 + 10 = 10$$

56.
$$(x-4)^4 = 81$$

57.
$$-x^7 = 40$$

58.
$$-12x^4 = -48$$

59.
$$(x + 12)^3 = 21$$

60.
$$x^3 - 14 = 22$$

61.
$$x^8 - 25 = -10$$

- **62. BIOLOGY CONNECTION** For mammals, the lung volume V (in milliliters) can be modeled by $V = 170m^{4/5}$ where *m* is the body mass (in kilograms). Find the lung volume of each mammal in the table shown.
 - ► Source: Respiration Physiology

Mammal	Body mass (kg)	
Banded mongoose	1.14	
Camel	229	
Horse	510	
Swiss cow	700	

63. SPILLWAY OF A DAM A dam's spillway capacity is an indication of how the dam will perform under certain flood conditions. The spillway capacity q (in cubic feet per second) of a dam can be calculated using the formula $q = c \ell h^{3/2}$

where c is the discharge coefficient, ℓ is the length (in feet) of the spillway, and h is the height (in feet) of the water on the spillway. A dam with a spillway 40 feet long, 5 feet deep, and 5 feet wide has a discharge coefficient of 2.79. What is the dam's maximum spillway capacity?

- Source: Standard Handbook for Civil Engineers
- **64.** SINFLATION If the price of an item increases from p_1 to p_2 over a period of n years, the annual rate of inflation i (expressed as a decimal) can be modeled by $i = \left(\frac{p_2}{p_1}\right)^{1/n} - 1$. In 1940 the average value of a home was \$2900. In 1990 the average value was \$79,100. What was the rate of inflation for a home? ► Source: Bureau of the Census
- **65. GEOMETRY CONNECTION** The formula for the volume Vof a regular dodecahedron (a solid with 12 regular pentagons as faces) is $V \approx 7.66a^3$ where a is the length of

an edge of the dodecahedron. Find the length of an edge of a regular dodecahedron that has a volume of 30 cubic feet. Round your answer to two decimal places.

centimeters. Round your answer to two decimal places.

- **67. SPECIES** Philip Darlington discovered a rule of thumb that relates an island's land area A (in square miles) to the number s of reptile and amphibian species the island can support by the model $A = 0.0779s^3$. The area of Puerto Rico is roughly 4000 square miles. About how many reptile and amphibian species can it support?
 - Source: The Song of the Dodo: Island Biogeography in an Age of Extinctions

STUDENT HELP

solving in Ex. 64.

HOMEWORK HELP

Visit our Web site www.mcdougallittell.com for help with problem

Go to classzone.com

68. MULTI-STEP PROBLEM A board foot is a unit for measuring wood. One board foot has a volume of 144 cubic inches. The Doyle log rule, given by $b = l\left(\frac{r-2}{2}\right)^2$, is a formula for approximating the number b of board feet in a log with length *l* (in feet) and radius *r* (in inches).

Log-sawing patterns for maximum board feet

The total volume V (in cubic inches) of wood in the main trunk of a Douglas fir can be modeled by $V = 250r^3$ where r is the radius of the trunk at the base of the tree. Suppose you need 5000 board feet from a 20 foot Douglas fir log.

- **a.** What volume of wood do you need?
- **b.** What is the radius of a log that will meet your needs?
- **c.** What is the total volume of wood in the main trunk of a Douglas fir tree that will meet your needs?
- **d.** If you find a suitable tree, what fraction of the tree would you actually use?
- **e.** Writing How does your answer to part (d) change if you instead need only 2500 board feet?

69. VISUAL THINKING Copy the table. Give the number of *n*th roots of *a* for each category.

	a < 0	<i>a</i> = 0	a > 0
n is even	?	?	?
n is odd	?	?	?

- **70.** The graph of $y = x^n$ where *n* is even is shown in red. Explain how the graph justifies the table for n even.
- **71.** Draw a similar graph to justify the table for n odd.

MIXED REVIEW

EXTRA CHALLENGE www.mcdougallittell.com

SOLVING SYSTEMS Use Cramer's rule to solve the linear system. (Review 4.3)

72.
$$x + 4y = 12$$

 $2x + 5y = 18$

73.
$$x - 2y = 11$$

 $2x + 5y = -14$

74.
$$2x - 4y = 7$$

 $-x + y = 1$

75.
$$-3x + 2y = -9$$
 76. $-x - 8y = 10$ **77.** $-x - y = 0$ $5x - 6y = 1$

76.
$$-x - 8y = 10$$

 $10x + y = 1$

77.
$$-x - y = 0$$

 $5x - 6y = 13$

SIMPLIFYING EXPRESSIONS Simplify the expression. Tell which properties of exponents you used. (Review 6.1 for 7.2)

78.
$$x^4 \cdot x^{-2}$$

79.
$$(x^{-3})$$

80.
$$(2xy^3)^{-2}$$

81.
$$5x^{-2}y^{0}$$

82.
$$\frac{x^3}{x^{-4}}$$

83.
$$\left(\frac{x^{-2}}{y}\right)^{\frac{1}{2}}$$

84.
$$\frac{7x^3y^8}{14xy^{-2}}$$

78.
$$x^4 \cdot x^{-2}$$
 79. $(x^{-3})^5$ **80.** $(2xy^3)^{-2}$ **81.** $5x^{-2}y^0$ **82.** $\frac{x^3}{x^{-4}}$ **83.** $\left(\frac{x^{-2}}{y}\right)^2$ **84.** $\frac{7x^3y^8}{14xy^{-2}}$ **85.** $\frac{16xy}{9x^5} \cdot \frac{9x^6y}{4y}$

FINDING ZEROS Find all the zeros of the polynomial function. (Review 6.7)

86.
$$f(x) = x^4 + 9x^3 - 5x^2 - 153x - 140$$
 87. $f(x) = x^4 + x^3 - 19x^2 + 11x + 30$

87.
$$f(x) = x^4 + x^3 - 19x^2 + 11x + 36$$

88.
$$f(x) = x^3 - 5x^2 + 16x - 80$$

88.
$$f(x) = x^3 - 5x^2 + 16x - 80$$
 89. $f(x) = x^3 - x^2 + 9x - 9$