Page Page 1 of 5

Section

≪<

Why did you learn it?

CHAPTER 8

Chapter Summary

Full Page View

(目)

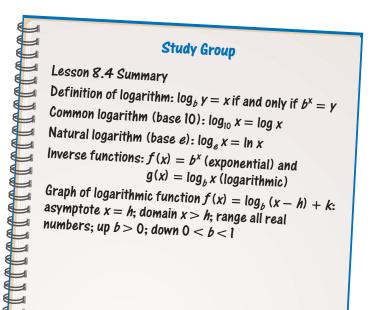
What did you learn?

Table of Contents

Graph exponential functions.

1 1	
• exponential growth functions (8.1)	Estimate wind energy generated by turbines. (p. 470)
• exponential decay functions (8.2)	Find the depreciated value of a car. (p. 476)
natural base functions (8.3)	Find the number of endangered species. (p. 482)
Evaluate and simplify expressions.	
• exponential expressions with base <i>e</i> (8.3)	Find air pressure on Mount Everest. (p. 484)
logarithmic expressions (8.4)	Approximate distance traveled by a tornado. (p. 491)
Graph logarithmic functions. (8.4)	Estimate the average diameter of sand particles for a
	beach with given slope. (p. 489)
Use properties of logarithms. (8.5)	Compare loudness of sounds. (p. 495)
Solve exponential and logarithmic equations. (8.6)	Use Newton's law of cooling. (p. 502)
Model data with exponential and power functions.	Model the number of U.S. stamps issued. (p. 515)
(8.7)	
Evaluate and graph logistic growth functions. (8.8)	Model the height of a sunflower. (p. 519)
Use exponential, logarithmic, and logistic growth	Model a telescope's limiting magnitude. (p. 507)
functions to model real-life situations. (8.1–8.8)	

How does Chapter 8 fit into the BIGGER PICTURE of algebra?


In Chapter 2 you began your study of functions and learned that quantities that increase by the same *amount* over equal periods of time are modeled by linear functions. In Chapter 8 you saw that quantities that increase by the same *percent* over equal periods of time are modeled by exponential functions.

Exponential functions and logarithmic functions are two important "families" of functions. They model many real-life situations, and they are used in advanced mathematics topics such as calculus and probability.

STUDY STRATEGY

How did you study with a group?

Here is an example of a summary prepared for Lesson 8.4 and presented to the group, following the **Study Strategy** on page 464.

• growth factor, p. 467

8.1

EXPONENTIAL GROWTH

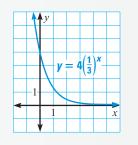
EXAMPLE An exponential growth function has the form $y = ab^x$ with a > 0 and b > 1.

To graph $y = 2 \cdot 5^{x+2} - 4$, first lightly sketch the graph of $y = 2 \cdot 5^x$, which passes through (0, 2) and (1, 10). Then translate the graph 2 units to the left and 4 units down. The graph passes through (-2, -2) and (-1, 6). The asymptote is the line y = -4. The domain is all real numbers, and the range is y > -4.

Examples on

pp. 465–468

Examples on pp. 474–476


Graph the function. State the domain and range.

1. $y = -2^{x} + 4$ **2.** $y = 3 \cdot 2^{x}$ **3.** $y = 5 \cdot 3^{x-2}$ **4.** $y = 4^{x+3} - 1$

8.2 EXPONENTIAL DECAY

EXAMPLE An exponential decay function has the form $y = ab^x$ with a > 0 and 0 < b < 1.

To graph $y = 4\left(\frac{1}{3}\right)^x$, plot (0, 4) and $\left(1, \frac{4}{3}\right)$. From *right* to *left* draw a curve that begins just above the *x*-axis, passes through the two points, and moves up. The asymptote is the line y = 0. The domain is all real numbers, and the range is y > 0.

Tell whether the function represents exponential growth or exponential decay.

5. $f(x) = 5\left(\frac{3}{4}\right)^x$ **6.** $f(x) = 2\left(\frac{5}{4}\right)^x$ **7.** $f(x) = 3(6)^{-x}$ **8.** $f(x) = 4(3)^x$

Graph the function. State the domain and range.

9.
$$y = \left(\frac{1}{4}\right)^x$$
 10. $y = 2\left(\frac{3}{5}\right)^{x-1}$ **11.** $y = \left(\frac{1}{2}\right)^x - 5$ **12.** $y = -3\left(\frac{3}{4}\right)^x + 2$

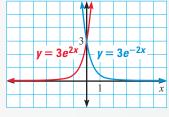
8.3

Section Page Page 3 of 5

The Number *e*

Examples on pp. 480-482

Examples on


pp. 486-489

Examples on pp. 493–495

EXAMPLES You can use <i>e</i> as the base of an exponential function.	
To graph such a function, use $e \approx 2.718$ and plot some points.	
$f(x) = 3e^{2x}$ is an exponential growth function, since $2 > 0$.	
$g(x) = 3e^{-2x}$ is an exponential decay function, since $-2 < 0$.	
3(c)	_
	_

(目)

For both functions, the y-intercept is 3, the asymptote is y = 0, the domain is all real numbers, and the range is y > 0.

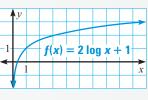
Graph the function. State the domain and range.

13. $y = e^{x+5}$

7

14. $y = 0.4e^x - 3$ **15.** $y = 4e^{-2x}$

16. $y = -e^x + 3$



LOGARITHMIC FUNCTIONS

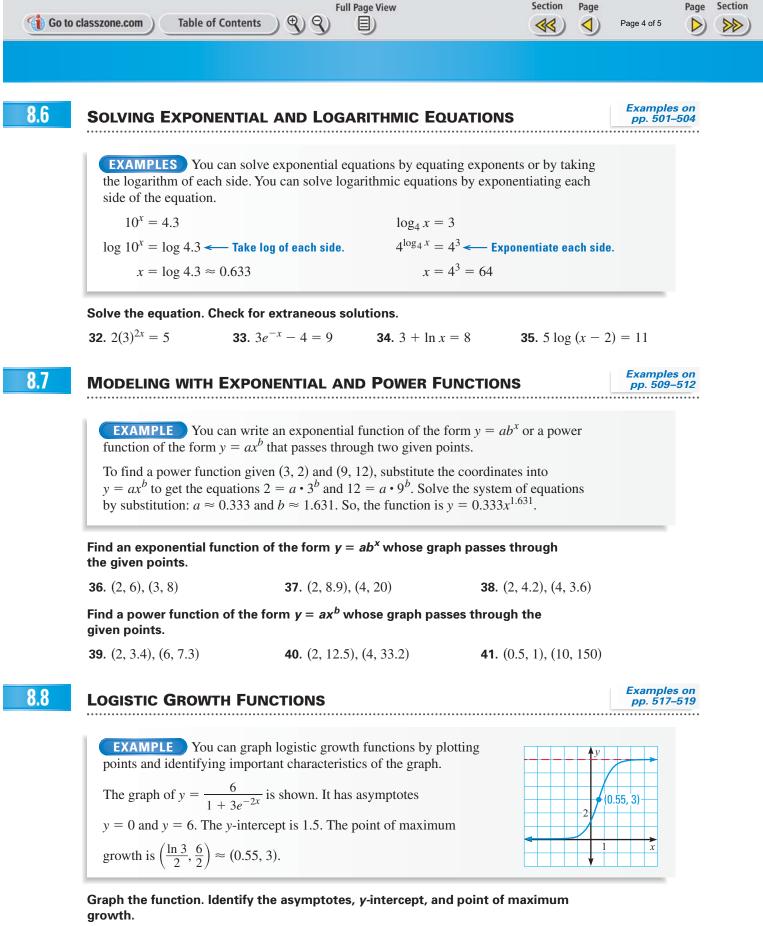
EXAMPLES You can use the definition of logarithm to evaluate expressions: $\log_h y = x$ if and only if $b^x = y$. The common logarithm has base 10 ($\log_{10} x = \log x$). The natural logarithm has base $e (\log_e x = \ln x)$.

To evaluate $\log_8 4096$, write $\log_8 4096 = \log_8 8^4 = 4$.

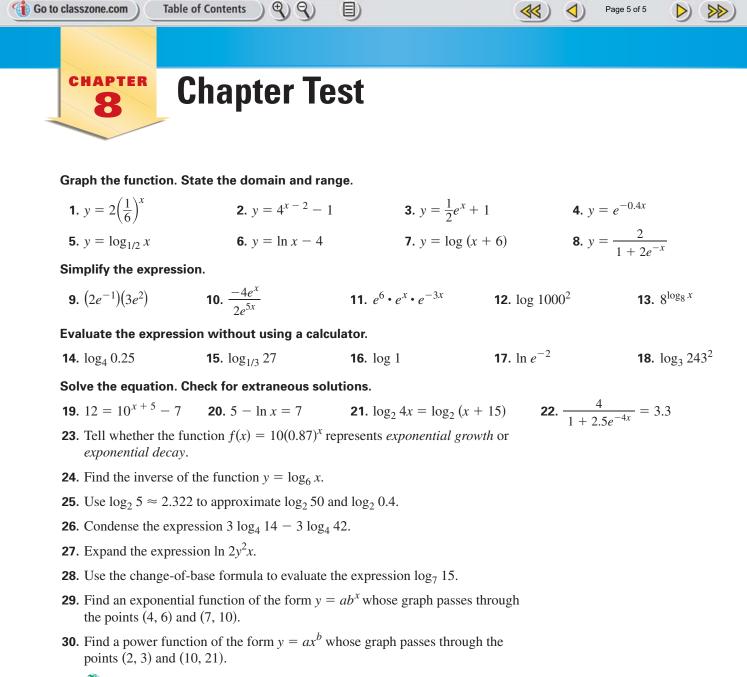
To graph the logarithmic function $f(x) = 2 \log x + 1$, plot points such as (1, 1) and (10, 3). The vertical line x = 0 is an asymptote. The domain is x > 0, and the range is all real numbers.

Evaluate the expression without using a calculator.

17. log ₄ 64	18. $\log_2 \frac{1}{8}$	3. $\log_2 \frac{1}{8}$ 19. $\log_3 \frac{1}{9}$		
Graph the function.	State the domain and	range.		
21. $y = 3 \log_5 x$	22. $y = \log 4x$	23. $y = \ln x + 4$	24. $y = \log(x - x)$	2)


8.5

PROPERTIES OF LOGARITHMS


EXAMPLES You can use product, quotient, and power properties of logarithms. **Expand:** $\log_2 \frac{3x}{y} = \log_2 3x - \log_2 y = \log_2 3 + \log_2 x - \log_2 y$ **Condense:** $3 \log_6 4 + \log_6 2 = \log_6 4^3 + \log_6 2 = \log_6 (64 \cdot 2) = \log_6 128$

Expand the expression.

28. $\log \frac{x^5 y^{-2}}{2y}$ **26.** $\ln \frac{7x}{3}$ **27.** $\log 5x^3$ **25.** log₃ 6*xy* Condense the expression. **29.** 2 ln 3 – ln 5 **30.** $\log_4 3 + 3 \log_4 2$ **31.** $0.5 \log 4 + 2(\log 6 - \log 2)$

42. $y = \frac{2}{1 + e^{-2x}}$ **43.** $y = \frac{4}{1 + 2e^{-3x}}$ **44.** $y = \frac{3}{1 + 0.5e^{-0.5x}}$

Full Page View

Section

Page

Section

Page

- **31. (S) CAR DEPRECIATION** The value of a new car purchased for \$24,900 decreases by 10% per year. Write an exponential decay model for the value of the car. After about how many years will the car be worth half its purchase price?
- **32. Second Example 1** Second and the pays the
- **33. (S) COD WEIGHT** The table gives the mean weight *w* (in kilograms) and age *x* (in years) of Atlantic cod from the Gulf of Maine.

x	1	2	3	4	5	6	7	8
w	0.751	1.079	1.702	2.198	3.438	4.347	7.071	11.518

- **a.** Draw a scatter plot of ln *w* versus *x*. Is an exponential model a good fit for the original data?
- **b.** Find an exponential model for the original data. Estimate the weight of a cod that is 9 years old.