## Chapter Summary

## CHAPTER 3

## WHAT did you learn?

Solve systems of linear equations in two variables.

- by graphing (3.1)
- using algebraic methods (3.2)

Graph and solve systems of linear inequalities. (3.3)

Solve linear programming problems. (3.4)

Graph linear equations in three variables. (3.5)

Model real-life problems with functions of two variables. (3.5)

## WHY did you learn it?

Plan a vacation within a budget. (p. 141)
Find the weights of atoms in a molecule. (p. 153)
Describe conditions that will satisfy nutritional requirements of wildlife. (p. 161)

Plan a meal that minimizes cost while satisfying nutritional requirements. (p. 167)

Find the volume of a geometric figure graphed in a three-dimensional coordinate system. (p. 174)

Evaluate advertising costs of a commercial. (p. 175) Use regional data to find the number of voters for different political parties in the United States. (p. 183)

See if a bus catches up to another one before arriving at a common destination. (p. 144)

Find the break-even point of a business. (p. 153)
Display possible sale prices for shoes. (p. 161)

## How does Chapter 3 fit into the BIGGER PICTURE of algebra?

Linear algebra is an important branch of mathematics that begins with solving linear systems. It has widespread applications to other areas of mathematics and to real-life problems, especially in business and the sciences. You will continue your study of linear algebra in the next chapter with matrices.

## STUDY STRATEGY

Did you recognize when new skills related to previously learned skills?

The two-column list you made, following the Study Strategy on page 138 , may resemble this one.


## CHAPTER 3 <br> Chapter Review

## VOCABULARY

- system of two linear equations in two variables, p. 139
- solution of a system of linear equations, p. 139
- substitution method, p. 148
- linear combination method, p. 149
- System of linear inequalities in two variables, p. 156
- solution of a system of linear inequalities, p. 156
- graph of a system of linear inequalities, p. 156
- optimization, p. 163
- linear programming, p. 163
- objective function, p. 163
- constraints, p. 163
- feasible region, p. 163
- three-dimensional coordinate system, p. 170
- z-axis, p. 170
- ordered triple, p. 170
- octants, p. 170
- linear equation in three variables, p. 171
- function of two variables, p. 171
- system of three linear equations in three variables, p. 177
- solution of a system of three linear equations, p. 177

EXAMPLE You can solve a system of two linear equations in two variables by graphing.

$$
\begin{array}{ll}
x+2 y=-4 & \text { Equation 1 } \\
3 x+2 y=0 & \text { Equation 2 }
\end{array}
$$

From the graph, the lines appear to intersect at $(2,-3)$. You can check this algebraically as follows.

$$
\begin{array}{ll}
2+2(-3)=-4 \sqrt{ } & \text { Equation } \mathbf{1} \text { checks. } \\
3(2)+2(-3)=0 \checkmark & \text { Equation } 2 \text { checks. }
\end{array}
$$



Graph the linear system and tell how many solutions it has. If there is exactly one solution, estimate the solution and check it algebraically.

1. $x+y=2$
$-3 x+4 y=36$
2. $x-5 y=10$
$-2 x+10 y=-20$
3. $2 x-y=5$
$2 x+3 y=9$
4. $y=\frac{1}{3} x$
$y=\frac{1}{3} x-2$

EXAMPLE 1 You can use the substitution method to solve a system algebraically.
(1) Solve the first equation for $x$.
(2) Substitute the value of $x$ into the second equation and solve for $y$.
$x-4 y=-25 \quad x=4 y-25$
$2 x+12 y=10$
When you substitute $y=3$ into one of the original equations, you get $x=-13$.

(1) | Multiply the first equation |
| :--- |
| by 3 and add to the second |
| equation. Solve for $x$. |
| $x-4 y=-25$ |
| $2 x+12 y=10$ |

| $3 x-12 y=-75$ |
| :--- |
| $2 x+12 y=10$ |
| $5 x=-65$ |
| $x$ |

(2) Substitute $x=-13$ into the original first equation and solve for $y$.

$$
\begin{aligned}
-13-4 y & =-25 \\
-4 y & =-12 \\
y & =3
\end{aligned}
$$

## Solve the system using any algebraic method.

5. $9 x-5 y=-30$
$x+2 y=12$
6. $x+3 y=-2$
$x+y=2$
7. $2 x+3 y=-7$
$-4 x-5 y=13$
8. $3 x+3 y=0$
$-2 x+6 y=-24$

EXAMPLE You can use a graph to show all the solutions of a system of linear inequalities.

$$
\begin{aligned}
& x \geq 0 \\
& y \geq 0 \\
& x+2 y<10
\end{aligned}
$$

Graph each inequality. The graph of the system is the region common to all of the shaded half-planes and
 includes any solid boundary line.

## Graph the system of linear inequalities.

9. $y<-3 x+3$
$y>x-1$
10. $x \geq 0$
$y \geq 0$
$-x+2 y<8$
11. $x \geq-2$
$x \leq 5$
$y \geq-1$
$y \leq 3$
12. $x+y \leq 8$
$2 x-y>0$
$y \leq 4$

EXAMPLE You can find the minimum and maximum values of the objective function $C=6 x+5 y$ subject to the constraints graphed below. They must occur at vertices of the feasible region.


$$
\begin{aligned}
& \text { At }(0,0): C=6(0)+5(0)=0 \longleftarrow \text { Minimum } \\
& \text { At }(0,3): C=6(0)+5(3)=15 \\
& \text { At }(5,2): C=6(5)+5(2)=40 \\
& \text { At }(7,0): C=6(7)+5(0)=42 \longleftarrow \text { Maximum }
\end{aligned}
$$

## 3.4 continued

Find the minimum and maximum values of the objective function $C=5 x+2 y$ subject to the given constraints.
13. $x \geq 0$
$y \geq 0$
$x+y \leq 10$
14. $x \geq 0$
$y \geq 0$
$4 x+5 y \leq 20$
15. $x \geq 1 ; x \leq 4$
$y \geq 0 ; y \leq 9$
16. $y \leq 6 ; x+y \leq 10$
$x \geq 0 ; x-y \leq 0$

EXAMPLE You can sketch the graph of an equation in three variables in a three-dimensional coordinate system.

To graph $3 x+4 y-3 z=12$, find $x$-, $y$-, and $z$-intercepts.
If $y=0$ and $z=0$, then $x=4$. Plot $(4,0,0)$.
If $x=0$ and $z=0$, then $y=3$. Plot $(0,3,0)$.
If $x=0$ and $y=0$, then $z=-4$. Plot $(0,0,-4)$.
Draw the plane that contains $(4,0,0),(0,3,0)$, and $(0,0,-4)$.


Sketch the graph of the equation. Label the points where the graph crosses the $x$-, $y$-, and $z$-axes.
17. $x+y+z=5$
18. $5 x+3 y+6 z=30$
19. $3 x+6 y-4 z=-12$

EXAMPLE You can use algebraic methods to solve a system of linear equations in three variables. First rewrite it as a system in two variables.
(1) Add the first and second equations.

$$
\begin{array}{lc}
x-3 y+z=22 & x-3 y+z=22 \\
2 x-2 y-z=-9 \\
x+y+3 z=24 & \frac{2 x-2 y-z=-9}{3 x-5 y=13}
\end{array}
$$

(2) Multiply the second equation by 3 and add to the third equation.
(3) Solve the new system.

$$
6 x-6 y-3 z=-27
$$

$$
\begin{array}{r}
x+y+3 z=24 \\
\hline 7 x-5 y=-3
\end{array}
$$

$$
\begin{aligned}
3 x-5 y & =13 \\
-7 x+5 y & =3 \\
\hline-4 x & =16 \\
x & =-4 \text { and } y=-5
\end{aligned}
$$

When you substitute $x=-4$ and $y=-5$ into one of the original equations, you get the value of the last variable: $z=11$.

## Solve the system using any algebraic method.

20. $x+2 y-z=3$
21. $2 x-4 y+3 z=1$
$-x+y+3 z=-5$
$3 x+y+2 z=4$
$6 x+2 y+10 z=19$
$-2 x+5 y-2 z=2$
22. $x+y+z=3$
$x+y-z=3$
$2 x+2 y+z=6$

Graph the linear system and tell how many solutions it has. If there is exactly one solution, estimate the solution and check it algebraically.

1. $x+y=1$
$2 x-3 y=12$
2. $y=-\frac{1}{3} x+4$
$y=6$
3. $y=2 x+2$
$y=2 x-3$
4. $\frac{1}{2} x+5 y=2$
$-x-10 y=-4$

Solve the system using any algebraic method.
5. $3 x+6 y=-9$
$x+2 y=-3$
6. $x-y=-5$
7. $7 x+y=-17$
$x+y=11$
$3 x-10 y=24$
8. $8 x+3 y=-2$
$-5 x+y=-3$

Graph the system of linear inequalities.
9. $2 x+y \geq 1$
$x \leq 3$
10. $x \geq 0$
$y<x$
$y>-x$
11. $x+2 y \geq-6$
$x+2 y \leq 2$
$y \geq-1$
12. $x+y<7$
$2 x-y \geq 5$
$x \geq-2$

Find the minimum and maximum values of the objective function subject to the given constraints.
13. Objective function: $\quad C=7 x+4 y$
Constraints:

$$
\begin{aligned}
& x \geq 0 \\
& y \geq 0 \\
& 4 x+3 y \leq 24
\end{aligned}
$$

14. Objective function:
Constraints:

$$
\begin{aligned}
& C=3 x+4 y \\
& x+y \leq 10 \\
& -x+y \leq 5 \\
& 2 x+4 y \leq 32
\end{aligned}
$$

Plot the ordered triple in a three-dimensional coordinate system.
15. $(-1,3,2)$
16. $(0,4,-2)$
17. $(-5,-1,2)$
18. $(6,-2,1)$

Sketch the graph of the equation. Label the points where the graph crosses the $x-, y$-, and $z$-axes.
19. $2 x+3 y+5 z=30$
20. $4 x+y+2 z=8$
21. $3 x+12 y-6 z=24$
22. Write the linear equation $2 x-5 y+z=9$ as a function of $x$ and $y$. Then
evaluate the function when $x=10$ and $y=3$.
Solve the system using any algebraic method.
23. $x+2 y-6 z=23$
$x+3 y+z=4$
$2 x+5 y-4 z=24$
24. $x+y+2 z=1$
$x-y+z=0$
$3 x+3 y+6 z=4$
25. $x+3 y-z=1$
$-4 x-2 y+5 z=16$
$7 x+10 y+6 z=-15$
26. Craft Supplies You are buying beads and string to make a necklace. The string costs $\$ 1.50$, a package of 10 decorative beads costs $\$ .50$, and a package of 25 plain beads costs $\$ .75$. You can spend only $\$ 7.00$ and you need 150 beads. How many packages of each type of bead should you buy?
27. Business An appliance store manager is ordering chest and upright freezers. One chest freezer costs $\$ 250$ and delivers a $\$ 40$ profit. One upright freezer costs $\$ 400$ and delivers a $\$ 60$ profit. Based on previous sales, the manager expects to sell at least 100 freezers. Total profit must be at least $\$ 4800$. Find the least number of each type of freezer the manager should order to minimize costs.

