Page

Chapter Chapter Summary

Table of Contents

WHAT did you learn?

WHY did you learn it?

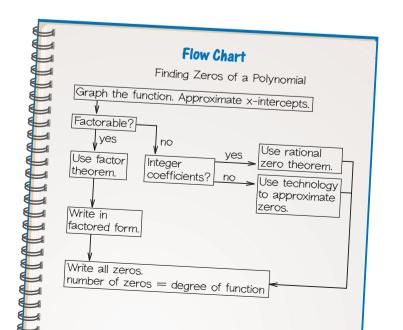
Section

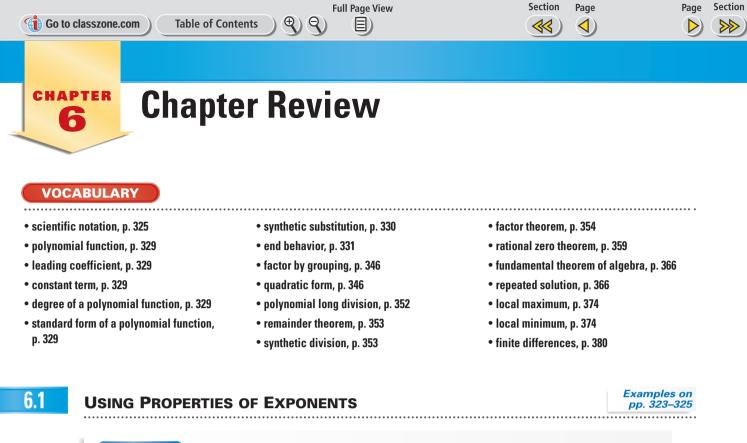
Use properties of exponents to evaluate and simplify expressions. (6.1)	Use scientific notation to find the ratio of a state's park space to its total area. (p. 328)
Evaluate polynomial functions using direct or synthetic substitution. (6.2)	Estimate the amount of prize money awarded at a tennis tournament. (p. 335)
Sketch and analyze graphs of polynomial functions. (6.2, 6.8)	Find maximum or minimum values of a function such as oranges consumed in the U.S. (p. 377)
Add, subtract, and multiply polynomials. (6.3)	Write a polynomial model for the power needed to move a bicycle at a certain speed. (p. 342)
Factor polynomial expressions. (6.4)	Find the dimensions of a block discovered by archeologists. (p. 347)
Solve polynomial equations. (6.4)	Find the dimensions of a sculpture. (p. 350)
Divide polynomials using long division or synthetic division. (6.5)	Write a function for the average annual amount of money spent per person at the movies. (p. 358)
Find zeros of polynomial functions. (6.6, 6.7)	Find dimensions for a candle-wax model of the Louvre pyramid. (p. 361)
Use finite differences and cubic regression to find polynomial models for data. (6.9)	Write and use a polynomial model for the speed of a space shuttle. (p. 385)
Use polynomials to solve real-life problems. (6.1–6.9)	Find the maximum volume and dimensions of a box made from a piece of cardboard. (p. 375)

Full Page View

(目)

 $\Theta (Q)$


How does Chapter 6 fit into the BIGGER PICTURE of algebra?


Chapter 6 contains the fundamental theorem of algebra. Finding the solutions of a polynomial equation is the most classic problem in all of algebra. It is equivalent to finding the zeros of a polynomial function. Real-life situations have been modeled by polynomial functions for hundreds of years.

STUDY STRATEGY

How did you make and use a flow chart?

Here is a flow chart for finding all the zeros of a polynomial function, following the **Study Strategy** on page 322.

EXAMPLE You can use properties of exponents to evaluate numerical expressions and to simplify algebraic expressions.

 $\frac{(3x^2y)^5}{9x^{10}y^6} = \frac{3^5x^{2\cdot 5}y^5}{9x^{10}y^6} = \frac{243}{9}x^{10} - \frac{10}{9}y^{5-6} = 27x^0y^{-1} = \frac{27}{y}$

all positive exponents

4. $\frac{5x^2}{v^{-2}} \cdot \frac{1}{25x^2y}$

Examples on pp. 329–332

Simplify the expression. Tell which properties of exponents you used. 1. $\left(\frac{2}{3}\right)^2 \cdot (6xy^{-1})^3$ 2. $x^4(x^{-5}x^3)^2$ 3. $\frac{-63xy^9}{18x^{-2}y^3}$

EVALUATING AND GRAPHING POLYNOMIAL FUNCTIONS

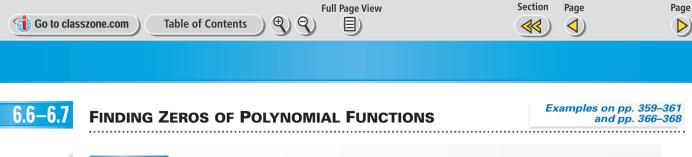
EXAMPLES Use direct or synthetic substitution to evaluate a polynomial function.

Evaluate $f(x) = x^3 - 2x - 1$ when x = 3 (synthetic substitution):

3

6.2

1 3 7 $20 \leftarrow f(3) = 20$


To graph, make a table of values, plot points, and identify end behavior.

x	-3	-2	-1	0	1	2	3
f (x)	-22	-5	0	-1	-2	3	20

The leading coefficient is positive and the degree is odd, so $f(x) \rightarrow -\infty$ as $x \rightarrow -\infty$ and $f(x) \rightarrow +\infty$ as $x \rightarrow +\infty$.

Use synthetic substitution to evaluate the polynomial function for the given value of x.

5. $f(x) = x^3 + 3x^2 - 12x + 7, x = 3$ **6.** $f(x) = x^4 - 5x^3 - 3x^2 + x - 5, x = -1$

EXAMPLE You can use the rational zero theorem and the fundamental theorem of algebra to find all the zeros of a polynomial function.

 $f(x) = x^4 + 3x^3 - 5x^2 - 21x + 22$ Possible rational zeros: $\frac{\pm 1, \pm 2, \pm 11, \pm 22}{1}$

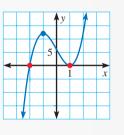
Using synthetic division, you can find that the rational zeros are 1 and 2. The degree of *f* is 4, so *f* has 4 zeros. To find the other two zeros, write in factored form: $f(x) = (x - 1)(x - 2)(x^2 + 6x + 11)$. Solve $x^2 + 6x + 11 = 0$: $x = -3 \pm \sqrt{2}i$. So the zeros of $f(x) = x^4 + 3x^3 - 5x^2 - 21x + 22$ are $1, 2, -3 + \sqrt{2}i, -3 - \sqrt{2}i$.

Find all the real zeros of the function.

18. $f(x) = x^3 + 12x^2 + 21x + 10$

19.
$$f(x) = x^4 + x^3 - x^2 + x - 2$$

ANALYZING GRAPHS OF POLYNOMIAL FUNCTIONS


EXAMPLE You can identify *x*-intercepts and turning points when you analyze the graph of a polynomial function.

The graph of $f(x) = 3x^3 - 9x + 6$ has

- two x-intercepts, -2 and 1.
- a local maximum at (-1, 12).

MODELING WITH POLYNOMIALS

• a local minimum at (1, 0).

Graph the polynomial function. Identify the *x*-intercepts and the points where the local maximums and local minimums occur.

20. $f(x) = (x - 2)^2(x + 2)$ **21.** $f(x) = x^3 - 3x^2$

22. $f(x) = 3x^4 + 4x^3$

Examples on pp. 380–382

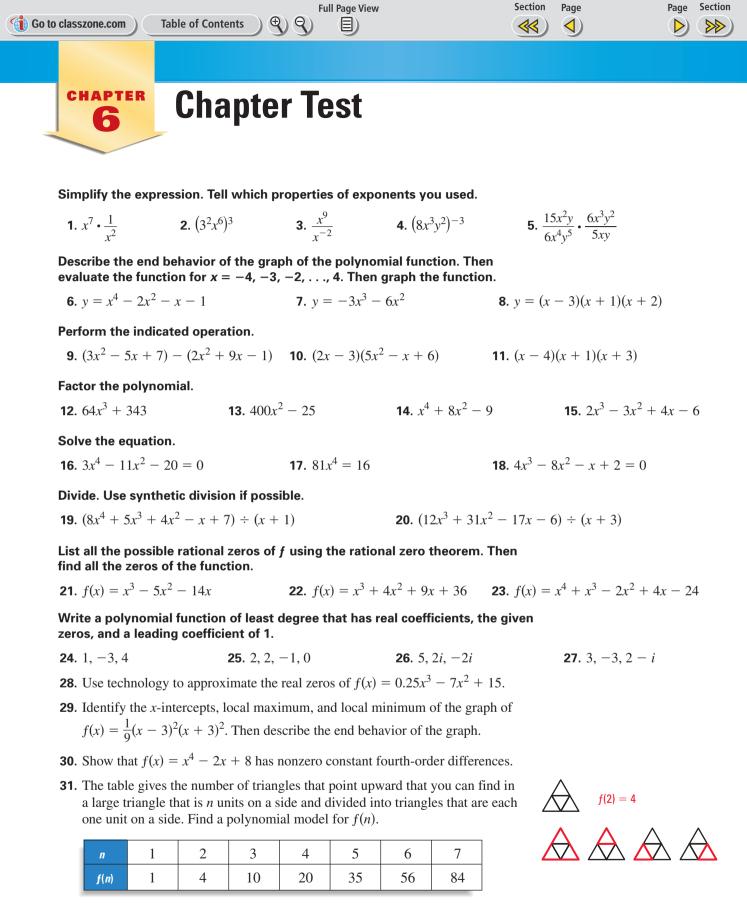
Examples on

pp. 373-375

Section

≫

EXAMPLE Sometimes you can use finite differences or cubic regression to find a polynomial model for a set of data.


function values first-order differences second-order differences

Since second-order differences are nonzero and constant, the data set can be modeled by a polynomial function of degree 2. The function is $f(x) = x^2 - 2$.

- **23.** Show that the third-order differences for the function $f(n) = n^3 + 1$ are nonzero and constant.
- **24.** Write a cubic function whose graph passes through points (1, 0), (-1, 0), (4, 0), and (2, -12). Use cubic regression on a graphing calculator to verify your answer.

6.9

6.8

32. Sector CELLS An adult human body contains about 75,000,000,000,000 cells. Each is about 0.001 inch wide. If the cells were laid end to end to form a chain, about how long would the chain be in miles? Give your answer in scientific notation.