# 13.1 

## Right Triangle Trigonometry

## goal 1 Evaluating Trigonometric Functions

Consider a right triangle, one of whose acute angles is $\theta$ (the Greek letter theta). The three sides of the triangle are the hypotenuse, the side opposite $\theta$, and the side adjacent to $\theta$.

Ratios of a right triangle's three sides are used to define the six trigonometric functions: sine, cosine, tangent, cosecant, secant, and cotangent. These six functions are abbreviated sin,
 cos, tan, csc, sec, and cot, respectively.

## RIGHT TRIANGLE DEFINITION OF TRIGONOMETRIC FUNGTIONS

Let $\theta$ be an acute angle of a right triangle. The six trigonometric functions of $\theta$ are defined as follows.

$$
\begin{array}{lll}
\sin \theta=\frac{\text { opp }}{\text { hyp }} & \cos \theta=\frac{\text { adj }}{\text { hyp }} & \tan \theta=\frac{\text { opp }}{\text { adj }} \\
\csc \theta=\frac{\text { hyp }}{\text { opp }} & \sec \theta=\frac{\text { hyp }}{\text { adj }} & \cot \theta=\frac{\text { adj }}{\text { opp }}
\end{array}
$$

The abbreviations opp, adj, and hyp represent the lengths of the three sides of the right triangle. Note that the ratios in the second row are the reciprocals of the ratios in the first row. That is:

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

## EXAMPLE 1 Evaluating Trigonometric Functions

Evaluate the six trigonometric functions of the angle $\theta$ shown in the right triangle.


## SOLUTION

From the Pythagorean theorem, the length of the hypotenuse is:

$$
\sqrt{3^{2}+4^{2}}=\sqrt{25}=5
$$

Using adj $=3$, opp $=4$, and hyp $=5$, you can write the following.

$$
\begin{array}{lll}
\sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{4}{5} & \cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{3}{5} & \tan \theta=\frac{\text { opp }}{\text { adj }}=\frac{4}{3} \\
\csc \theta=\frac{\text { hyp }}{\text { opp }}=\frac{5}{4} & \sec \theta=\frac{\text { hyp }}{\text { adj }}=\frac{5}{3} & \cot \theta=\frac{\text { adj }}{\text { opp }}=\frac{3}{4}
\end{array}
$$



KITE FLYING
In the late 1800s and early 1900s, kites were used to lift weather instruments. In 1919 the German Weather Bureau set a kite-flying record. Eight kites on a single line, like those pictured above, were flown at an altitude of 9740 meters.

## goal 2 Using Trigonometry in Real Life

## EXAMPLE 4 Finding the Altitude of a Kite

Kite Flying Wind speed affects the angle at which a kite flies. The table at the right shows the angle the kite line makes with a line parallel to the ground for several different wind speeds. You are flying a kite 4 feet above the ground and are using 500 feet of line. At what altitude is the kite flying if the wind speed is 35 miles per hour?

## SOLUTION

| Wind speed <br> (miles per hour) | Angle of kite <br> line (degrees) |
| :---: | :---: |
| 25 | 70 |
| 30 | 60 |
| 35 | 48 |
| 40 | 29 |
| 45 | 0 |

At a wind speed of 35 miles per hour, the angle the kite line makes with a line parallel to the ground is $48^{\circ}$.
Write an equation using a trigonometric function that involves the ratio of the distance $d$ and 500 .

$$
\begin{aligned}
\sin 48^{\circ} & =\frac{d}{500} & & \text { Write trigonometric equation. } \\
0.7431 & \approx \frac{d}{500} & & \text { Simplify. } \\
372 & \approx d & & \text { Solve for } d .
\end{aligned}
$$



When you add 4 feet for the height at which you are holding the kite line, the kite's altitude is about 376 feet.

In Example 4 the angle the kite line makes with a line parallel to the ground is the angle of elevation. At the height of the kite, the angle from a line parallel to the ground to the kite line is the angle of depression. These two angles have the same measure.


## EXAMPLE 5 Finding the Distance to an Airport

An airplane flying at an altitude of 30,000 feet is headed toward an airport. To guide the airplane to a safe landing, the airport's landing system sends radar signals from the runway to the airplane at a $10^{\circ}$ angle of elevation. How far is the airplane (measured along the ground) from the airport runway?

## Solution

Begin by drawing a diagram.

$$
\begin{aligned}
\frac{x}{30,000} & =\cot 10^{\circ}=\frac{1}{\tan 10^{\circ}} \approx 5.671 \\
x & \approx 170,100
\end{aligned}
$$

The plane is about 170,100 feet (or 32.2 miles) from the airport.


## Guided Practice

Vocabulary Check

## Concept Check

1. Explain what it means to solve a right triangle.
2. Given a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with only the measures of the angles labeled, can you find the lengths of any of the sides? Explain.
3. If you are given a right triangle with an acute angle $\theta$, what two trigonometric functions of $\theta$ can you calculate using the lengths of the hypotenuse and the side opposite $\theta$ ?
4. For which acute angle $\theta$ is $\cos \theta=\frac{\sqrt{3}}{2}$ ?

## Skill Check Evaluate the six trigonometric functions of the angle $\theta$.

5. 


6.

7.


Solve $\triangle A B C$ using the diagram at the right and the given measurements.
8. $A=20^{\circ}, a=12$
9. $A=75^{\circ}, c=20$
10. $B=40^{\circ}, c=5$
11. $A=62^{\circ}, b=30$
12. $B=63^{\circ}, a=15$
13. $B=15^{\circ}, b=42$

14. Kite Flying Look back at Example 4 on page 771. Suppose you are flying a kite 4 feet above the ground on a line that is 300 feet long. If the wind speed is 30 miles per hour, what is the altitude of the kite?

## Practice and Applications

## Student Help

$\rightarrow$ Extra Practice to help you master skills is on p .957.

HOMEWORK HELP
Example 1: Exs. 15-21
Example 2: Exs. 22-24
Example 3: Exs. 25-40
Examples 4, 5: Exs. 43-50

EVALUATING FUNCTIONS Evaluate the six trigonometric functions of the angle $\theta$.
15.

18.

16.

19.

17.

20.

21. Visual Thiniking The lengths of the sides of a right triangle are 5 centimeters, 12 centimeters, and 13 centimeters. Sketch the triangle. Let $\theta$ represent the angle that is opposite the side whose length is 5 centimeters. Evaluate the six trigonometric functions of $\theta$.

Full Page View
Section
Page
$(1)$
Section

Finding Side Lengths Find the missing side lengths $x$ and $y$.
22.

23.

24.


EvALUATING FUNCTIONS Use a calculator to evaluate the trigonometric function. Round the result to four decimal places.
25. $\sin 14^{\circ}$
26. $\cos 31^{\circ}$
27. $\tan 59^{\circ}$
28. $\sec 23^{\circ}$
29. $\csc 80^{\circ}$
30. $\cot 36^{\circ}$
31. $\csc 6^{\circ}$
32. $\cot 11^{\circ}$

SOLVING TRIANGLES Solve $\triangle A B C$ using the diagram and the given measurements.
33. $B=24^{\circ}, a=8$
34. $A=37^{\circ}, c=22$
35. $A=19^{\circ}, b=4$
36. $B=41^{\circ}, c=18$
37. $A=29^{\circ}, b=21$
38. $B=56^{\circ}, a=6.8$
39. $B=65^{\circ}, c=12$
40. $A=70^{\circ}, c=30$


GEOMEIRY CONNECTION Find the area of the regular polygon with point $P$ at its center.


Pittsburgh in 1877, the Duquesne Incline transports people up and down the side of a mountain in cable cars. In 1877 the cost of a oneway trip was $\$ .05$. Today the cost is $\$ 1$.


DUQUESNE INCLINE In Exercises 43 and 44, use the following information. The track of the Duquesne Incline is about 800 feet long and the angle of elevation is $30^{\circ}$. The average speed of the cable cars is about 320 feet per minute.
43. How high does the Duquesne Incline rise?
44. What is the vertical speed of the cable cars (in feet per minute)?
45. SKI SlOPE A ski slope at a mountain has an angle of elevation of $25.2^{\circ}$. The vertical height of the slope is 1808 feet. How long is the ski slope?
46. BOARDING A SHIP A gangplank is a narrow ramp used for boarding or leaving a ship. The maximum safe angle of elevation for a gangplank is $20^{\circ}$. Suppose a gangplank is 10 feet long. What is the closest a ship can come to the dock for the gangplank to be used?
47. JIN IMAO BUILDING You are standing 75 meters from the base of the Jin Mao Building in Shanghai, China. You estimate that the angle of elevation to the top of the building is $80^{\circ}$. What is the approximate height of the building? Suppose one of your friends is at the top of the building. What is the distance between you and your friend?

UNIT ANALYSIS Find the product. Give the answer with the appropriate unit of measure. (Review 1.1 for 13.2)
55. $(3.5$ hours $) \cdot \frac{45 \text { miles }}{1 \text { hour }}$
56. (500 dollars) $\cdot \frac{12.2 \text { schillings }}{1 \text { dollar }}$
57. $\frac{3 \text { dollars }}{1 \text { square foot }} \cdot(1222$ square feet $)$
58. $(12$ seconds $) \cdot \frac{254 \text { feet }}{1 \text { second }}$

ClASSIFYING Classify the conic section. (Review 10.6)
59. $y^{2}-16 x-14 y+17=0$
60. $25 x^{2}+y^{2}-100 x-2 y+76=0$
61. $x^{2}+y^{2}=25$
62. $x^{2}-y^{2}=100$
63. ESSAY TOPICS For a homework assignment you have to choose from 15 possible topics on which to write an essay. If all of the topics are equally interesting, what is the probability that you and your five friends will all choose different topics? (Review 12.5)

## Columbus's Voyage

## THEN

## NOW

IN 1492 Christopher Columbus set sail west from the Canary Islands intending to reach Japan. Due to miscalculations of Earth's circumference and the relative location of Japan, he instead sailed to the New World.
Columbus believed the distance west from the Canary Islands to Japan to be $\frac{1}{6}$ the circumference of Earth at that latitude. He supposed Earth's radius at the equator to be about 2865 miles.

1. Use the diagram at the right to calculate what Columbus believed to be the radius $r$ of Earth at the latitude of the
 Canary Islands.
2. Use your answer to Exercise 1 to calculate the distance west from the Canary Islands that Columbus believed he would find Japan.
3. Use reference materials to find the true distance west from the Canary Islands to Japan. How far off were Columbus's calculations?

| Combination with satellite-based navigat |
| :--- |
| $\begin{array}{c}\text { The oldest existing map } \\ \text { was made on a clay } \\ \text { tablet in Babylonia. }\end{array}$ |
| 2500 B.C. |

TODAY aerial photography and computers are used to make maps. Accurate maps in combination with satellite-based navigation make travel a more exact science.

