to classzone.com Table of Contents 🕄 🌖 🗐	Section Page Page Sector					
13 Chapter Sumn	nary					
WHAT did you learn?	WHY did you learn it?					
 Evaluate trigonometric functions. of acute angles (13.1) of any angle (13.3) 	Find the altitude of a kite. (p. 771) Find the horizontal distance traveled by a golf ball. (p. 787)					
 Find the sides and angles of a triangle. solve right triangles (13.1) use the law of sines (13.5) use the law of cosines (13.6) 	 Find the length of a zip-line at a ropes course. (p. 7 Find the distance between two buildings. (p. 805) Find the angle at which two trapeze artists meet. (p. 811) 					
Measure angles using degree measure and radian measure. (13.2)	Find the angle generated by a figure skater performing a jump. (p. 781)					
Find arc lengths and areas of sectors. (13.2) Evaluate inverse trigonometric functions. (13.4)	Find the area irrigated by a rotating sprinkler. (p. 78 Find the angle at which to set the arm of a crane. (p. 794)					
 Find the area of a triangle. using two sides and the included angle (13.5) using Heron's formula (13.5) 	Find the amount of paint needed for the side of a house. (p. 806)					
Use parametric equations to model linear or projectile motion. (13.7)	Model the path of a leaping dolphin. (p. 818)					
Use trigonometric and inverse trigonometric functions to solve real-life problems. (13.1, 13.3–13.7)	Find distances for a marching band on a football fie (p. 787)					

How does Chapter 13 fit into the BIGGER PICTURE of algebra?

Trigonometry is closely tied to both algebra and geometry. In this chapter you studied trigonometric functions of *angles*, defined by ratios of side lengths of right triangles.

In the next chapter you will study trigonometric functions of *real numbers*, used to model periodic behavior. You will see even more connections between trigonometry and algebra as you graph trigonometric functions in a coordinate plane.

STUDY STRATEGY

How did you draw diagrams?

Here is an example of a diagram drawn for Exercise 22 on page 810, following the **Study Strategy** on page 768.

EXAMPLE You can evaluate the six trigonometric functions of θ for the triangle shown. First find the hypotenuse length: $\sqrt{5^2 + 12^2} = \sqrt{169} = 13$. $\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{12}{13}$ $\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{5}{13}$ $\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{12}{5}$ $\csc \theta = \frac{\text{hyp}}{\text{opp}} = \frac{13}{12}$ $\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{13}{5}$ $\cot \theta = \frac{\text{adj}}{\text{opp}} = \frac{5}{12}$

Evaluate the six trigonometric functions of θ .

Examples on pp. 776–779

13.2

GENERAL ANGLES AND RADIAN MEASURE

EXAMPLES You can measure angles using degree measure or radian measure.

$$20^{\circ} = 20^{\circ} \left(\frac{\pi \text{ radians}}{180^{\circ}}\right) = \frac{\pi}{9} \text{ radians} \qquad \frac{7\pi}{6} \text{ radians} = \left(\frac{7\pi}{6} \text{ radians}\right) \left(\frac{180^{\circ}}{\pi \text{ radians}}\right) = 210^{\circ}$$

Arc length of the sector at the right: $s = r\theta = 8\left(\frac{2\pi}{3}\right) = \frac{16\pi}{3}$ inches
Area of the sector at the right: $A = \frac{1}{2}r^2\theta = \frac{1}{2}(8^2)\left(\frac{2\pi}{3}\right) = \frac{64\pi}{3}$ square inches
b in.

Rewrite each degree measure in radians and each radian measure in degrees.

5. 30° **6.** 225° **7.** -15° **8.** $\frac{3\pi}{4}$ **9.** $\frac{5\pi}{3}$ **10.** $\frac{\pi}{3}$

Section

Page

Section

Page

$$\frac{a}{\sin 105^{\circ}} = \frac{12}{\sin 27^{\circ}} \qquad \qquad \frac{c}{\sin 48^{\circ}} = \frac{12}{\sin 27^{\circ}} a = \frac{12 \sin 105^{\circ}}{\sin 27^{\circ}} \approx 25.5 \qquad \qquad c = \frac{12 \sin 48^{\circ}}{\sin 27^{\circ}} \approx 19.6$$

Area of this triangle $=\frac{1}{2}bc \sin A = \frac{1}{2}(12)(19.6) \sin 105^{\circ} \approx 114$ square units

Section

Page

Solve $\triangle ABC$. (*Hint:* Some of the "triangles" may have no solution and some may have two.) 24. $A = 45^{\circ}$, $B = 60^{\circ}$, c = 4425. $B = 18^{\circ}$, b = 12, a = 1926. $C = 140^{\circ}$, c = 40, b = 20Find the area of the triangle with the given side lengths and included angle. 27. $C = 35^{\circ}$, b = 10, a = 2228. $A = 110^{\circ}$, b = 8, c = 729. $B = 25^{\circ}$, a = 15, c = 31

13.6

THE LAW OF COSINES

Examples on pp. 807–809

Section

Page

EXAMPLE You can solve the triangle below using the law of cosines. Law of cosines: $b^2 = 35^2 + 37^2 - 2(35)(37) \cos 25^\circ \approx 247$ $b \approx 15.7$ Law of sines: $\frac{\sin A}{35} \approx \frac{\sin 25^\circ}{15.7}$, $\sin A \approx \frac{35 \sin 25^\circ}{15.7}$, $A \approx 70.4^\circ$ $C \approx 180^\circ - 25^\circ - 70.4^\circ = 84.6^\circ$ You can use Heron's formula to find the area of this triangle: $s \approx \frac{1}{2}(35 + 15.7 + 37) \approx 44$, so area $\approx \sqrt{44(44 - 35)(44 - 15.7)(44 - 37)} \approx 280$ square units

Solve $\triangle ABC$.

30. <i>a</i> = 25, <i>b</i> = 18, <i>c</i> = 28	31 . <i>a</i> = 6, <i>b</i> = 11, <i>c</i> = 14	32. $B = 30^{\circ}, a = 80, c = 70$

Find the area of $\triangle ABC$ having the given side lengths.

33. *a* = 11, *b* = 2, *c* = 12 **34.** *a* = 4, *b* = 24, *c* = 26 **35.** *a* = 15, *b* = 8, *c* = 21

13.7

PARAMETRIC EQUATIONS AND PROJECTILE MOTION

Examples on pp. 813–815

EXAMPLE You can graph the parametric equations x = -3t and y = -t for $0 \le t \le 3$. Make a table of values, plot the points (x, y), and connect the points.

t	0	1	2	3
x	0	-3	-6	-9
у	0	-1	-2	-3

								-
						1	y	
_						1		
								1 x
			\sim	\frown				
	\sim							
						١	1	

To write an xy-equation for these parametric equations, solve the first equation for t:

 $t = -\frac{1}{3}x$. Substitute into the second equation: $y = \frac{1}{3}x$. The domain is $-9 \le x \le 0$.

Graph the parametric equations.

36. x = 3t + 1 and y = 3t + 6 for $0 \le t \le 5$ **37.** x = 2t + 4 and y = -4t + 2 for $2 \le t \le 5$

Write an *xy*-equation for the parametric equations. State the domain.

38. x = 5t and y = t + 7 for $0 \le t \le 20$

39. x = 2t - 3 and y = -4t + 5 for $0 \le t \le 8$

