TRIGONOMETRIC IDENTITIES

Reciprocal Identities

$\sin \theta = \frac{1}{\csc \theta}$	$\csc \theta = \frac{1}{\sin \theta}$
$\cos\theta = \frac{1}{\sec\theta}$	$\sec \theta = \frac{1}{\cos \theta}$
$\tan \theta = \frac{1}{\cot \theta}$	$\cot \theta = \frac{1}{\tan \theta}$

Quotient Identities

 $\frac{\sin\theta}{\cos\theta} = \tan\theta \qquad \qquad \frac{\cos\theta}{\sin\theta} = \cot\theta$

Pythagorean Identities

 $\sin^2 \theta + \cos^2 \theta = 1$ $\tan^2 \theta + 1 = \sec^2 \theta$ $1 + \cot^2 \theta = \csc^2 \theta$

Cofunction Identities

$\sin\theta=\cos\left(90^\circ-\theta\right)$	$\cos\theta = \sin\left(90^\circ - \theta\right)$
$\tan\theta=\cot\left(90^\circ-\theta\right)$	$\cot \theta = \tan \left(90^\circ - \theta\right)$
$\sec \theta = \csc \left(90^\circ - \theta\right)$	$\csc \theta = \sec \left(90^\circ - \theta\right)$

Sum and Difference Identities

 $\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ $\tan (\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$

Opposite-Angle Identities

$$\sin(-A) = -\sin A$$
 $\cos(-A) = \cos A$

Double-Angle Identities

 $\sin 2\theta = 2 \sin \theta \cos \theta$ $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ $= 2 \cos^2 \theta - 1$ $= 1 - 2 \sin^2 \theta$ $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$

Half-Angle Identities

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$
$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$
$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}, \cos \alpha \neq -1$$

Symmetry Identities

The following trigonometric identities hold for any integer k and all values of A.

- Case 1: $\sin (A + 360k^\circ) = \sin A$ $\cos (A + 360k^\circ) = \cos A$
- Case 2: $\sin (A + 180^{\circ}(2k 1)) = -\sin A$ $\cos (A + 180^{\circ}(2k - 1)) = -\cos A$
- Case 3: $\sin (360k^\circ A) = -\sin A$ $\cos (360k^\circ - A) = \cos A$
- Case 4: $\sin (180^{\circ}(2k-1) A) = \sin A$ $\cos (180^{\circ}(2k-1) - A) = -\cos A$

FORMULAS

CHAPTER 1 (pp. 4–65)

Slope $m = \frac{y_1 - y_2}{x_1 - x_2}$

CHAPTER 2 (pp. 66–125) Determinant $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$ $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$

Inverse of a Second Order Matrix

 $A^{-1} = \frac{1}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}} \begin{bmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{bmatrix}$

CHAPTER 3 (pp. 126–203) Direct Variation $y = kx^n, n > 0$

Inverse Variation

 $x^n y = k \text{ or } y = \frac{k}{x^n}, n > 0$

Joint Variation $y = kx^n z^n$, where $x \neq 0, z \neq 0$, and n > 0

CHAPTER 4 (pp. 204–273) Quadratic Formula

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

CHAPTER 5 (pp. 276–341) Trigonometric Ratios

 $\sin \theta = \frac{\text{side opposite}}{\text{hypotenuse}}$ $\cos \theta = \frac{\text{side adjacent}}{\text{hypotenuse}}$ $\tan \theta = \frac{\text{side opposite}}{\text{side adjacent}}$

Inverse Trigonometric Ratios

 $\csc \theta = \frac{1}{\sin \theta} \text{ or } \frac{\text{hypotenuse}}{\text{side adjacent}}$ $\sec \theta = \frac{1}{\cos \theta} \text{ or } \frac{\text{hypotenuse}}{\text{side adjacent}}$ $\cot \theta = \frac{1}{\tan \theta} \text{ or } \frac{\text{side adjacent}}{\text{side opposite}}$

Trigonometric Functions of an Angle in Standard Position

$\sin \theta = \frac{y}{r}$	$\csc \theta = \frac{r}{y}$
$\cos \theta = \frac{x}{r}$	$\sec \theta = \frac{r}{x}$
$\tan \theta = \frac{y}{x}$	$\cot \theta = \frac{x}{y}$

Law of Sines

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Area of a Triangle

 $K = \frac{1}{2}bc \sin A$

 $K = \frac{1}{2} c^2 \frac{\sin A \sin B}{\sin C}$

Law of Cosines $a^2 = b^2 + c^2 - 2bc \cos A$ $b^2 = a^2 + c^2 - 2ac \cos B$ $c^2 = a^2 + b^2 - 2ab \cos C$

Hero's Formula $K = \sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{1}{2}(a+b+c)$

CHAPTER 6 (pp. 342–419) Degree/Radian Conversion 1 radian = $\frac{180}{\pi}$ degrees 1 degree = $\frac{\pi}{180}$ radians

Length of an Arc $s = r\theta$ Area of a Circular Sector $A = \frac{1}{2}r^2\theta$

Angular Velocity $\omega = \frac{\theta}{t}$ Linear Velocity $\nu = r \frac{\theta}{t}$

CHAPTER 7 (pp. 420-483) Distance from a Point to a Line

 $d = \frac{Ax_1 + By_1 + C}{\pm \sqrt{A^2 + B^2}}$

CHAPTER 8 (pp. 484–549) Magnitude of $\overline{P_1P_2}$ in Two Dimensions $|\overline{P_1P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

CONTENTS

Magnitude of $\overline{P_1P_2}$ in Three Dimensions

 $\left|\overline{P_1P_2}\right| =$

 $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

Inner Product of Vectors in a Plane $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a_1 b_1 + a_2 b_2$

Inner Product of Vectors in Space $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a_1b_1 + a_2b_2 + a_3b_3$

Cross Product of Vectors in Space $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \vec{\mathbf{i}} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \vec{\mathbf{j}} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \vec{\mathbf{k}}$

Parametric Equations for the Path of a Projectile $x = t |\vec{\mathbf{v}}| \cos \theta$ and $y = t |\vec{\mathbf{v}}| \sin \theta - \frac{1}{2} gt^2$

CHAPTER 9 (pp. 552–613) Distance Formula in Polar Plane $P_1P_2 = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1)}$

Conversion from Polar Coordinates to Rectangular Coordinates $x = r \cos \theta, y = r \sin \theta$

Conversion from Rectangular Coordinates to Polar Coordinates $r = \sqrt{x^2 + y^2}$ $\theta = \arctan \frac{y}{x}$, when x > 0 $\theta = \arctan \frac{y}{x} + \pi$, when x < 0Absolute Value of a Complex Number $|a + bi| = \sqrt{a^2 + b^2}$

Polar Form of a Complex Number $r(\cos \theta + i \sin \theta)$

Product of Complex Numbers in Polar Form $r_1(\cos \theta_1 + i \sin \theta_1) \cdot r_2(\cos \theta_2 + i \sin \theta_2) = r_1r_2[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$

(continued)

FORMULAS

Quotient of Complex Numbers in Polar Form

 $\frac{r_1(\cos \theta_1 + \mathbf{i} \sin \theta_1)}{r_2(\cos \theta_2 + \mathbf{i} \sin \theta_2)} = \frac{r_1}{r_2}[\cos(\theta_1 - \theta_2) + \mathbf{i} \sin(\theta_1 - \theta_2)]$

De Moivre's Theorem $[r(\cos \theta + \mathbf{i} \sin \theta)]^n =$ $r^n(\cos n\theta + \mathbf{i} \sin n\theta)$

CHAPTER 10 (pp. 614–693) Distance Formula for Two Points

 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Midpoint of a Line Segment $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Rotation Equations $x = x' \cos \theta + y' \sin \theta$

 $y = -x' \sin \theta + y' \cos \theta$

Angle of Rotation

 $\theta = \frac{\pi}{4}$, if A = C or $\tan 2\theta = \frac{B}{A - C}$, if $A \neq C$

CHAPTER 11 (pp. 694–755) Exponential Growth or Decay Formulas $N = N_o(1 + r)^t$ $N = N_o e^{kt}$

Compound Interest Formula

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

Continuously Compounded Interest Formula $A = Pe^{rt}$

Change of Base Formula

 $\log_a n = \frac{\log_b n}{\log_b a}$ **Doubling Time** $t = \frac{\ln 2}{b}$

CHAPTER 12 (pp. 758–835) *n*th Term of an Arithmetic Sequence $a_n = a_1 + (n - 1)d$

Sum of an Arithmetic Sequence $S_n = \frac{n}{2}(a_1 + a_n)$ nth Term of a Geometric Sequence $a_n = a_1 r^{n-1}$ Sum of a Finite Geometric Sequence $S_n = \frac{a_1 - a_1 r^n}{1 - r}$

Sum of an Infinite Geometric Series $S_n = \frac{a_1}{1-r}$

Euler's Formula $e^{i\alpha} = \cos \alpha + i \sin \alpha$

CHAPTER 13 (pp. 836–887) Definitions of Permutations P(n, n) = n! $P(n, r) = \frac{n!}{(n - r)!}$

Definition of Combination $C(n, r) = \frac{n!}{(n-r)! r!}$

Permutation of *n* objects with repetitions (*p* alike and *q* alike) $\frac{n!}{p! q!}$

Circular Permutations of *n* **Objects** $\frac{n!}{n}$ or (n - 1)!

Probability of Two Independent Events $P(A \text{ and } B) = P(A) \cdot P(B)$

Probability of Two Dependent Events $P(A \text{ and } B) = P(A) \cdot P(B \text{ following } A)$

Probability of Mutually Exclusive Events

P(A or B) = P(A) + P(B)
Probability of Inclusive Events

P(A or B) = P(A) + P(B) - P(A and B)Conditional Probability

 $P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$ where $P(B) \neq 0$

CHAPTER 14 (pp. 888-939)

Arithmetic Mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Mean of the Data in Frequency Distribution

Semi-Interquartile Range $Q_R = \frac{Q_3 - Q_1}{2}$

Mean Deviation
$$MD = \frac{1}{n} \sum_{i=1}^{n} |X_i - \overline{X}|$$

Standard Deviation

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

Standard Deviation of the Data in a Frequency Distribution

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2 \cdot f_i}{\sum_{i=1}^{n} f_i}}$$

Standard Error of the Mean $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{N}}$

CHAPTER 15 (pp. 941–983) Constant Multiple of a Power Rule for Derivatives If $f(x) = cx^n$, where *c* is a constant

and *n* is a rational number, then $f'(x) = cnx^{n-1}$.

Constant Multiple of a Power Rule for Antiderivatives

If $f(x) = kx^n$, where *n* is a rational number other than -1 and *k* is a constant, the antiderivative is $F(x) = k \cdot \frac{1}{n+1}x^{n+1} + C.$

Definite Integral $\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \, \Delta x \text{ where}$ $\Delta x = \frac{b-a}{n}$

Fundamental Theorem of Calculus $\int_{a}^{b} f(x) dx = F(b) - F(a), \text{ where } F(x) \text{ is the antiderivative of } f(x).$

SYMBOLS

÷	is equal to	$\sin^2 \theta$	$(\sin \theta)^2$	M_d	median
¥	is not equal to	x	infinity	$\sigma_{\widetilde{X}}$	standard error of
<	is less than	i	$\sqrt{-1}$		the mean
\leq	is less than or	r cis θ	$r(\cos \theta + \mathbf{i} \sin \theta)$	MD	mean deviation
	equal to	$\mathbf{\overline{v}}$ or \overline{AB}	a vector or	f(x)	f of x or the value of function f at x
<	is not less than		directed line segment	f'(x)	<i>f</i> prime of <i>x</i> or the
>	is greater than	$\langle \boldsymbol{x}, \boldsymbol{y} \rangle$	vector with initial	du	derivative of $f(x)$
2	equal to		point at origin	$\frac{dy}{dx}$	derivative of y
≯	is not greater than		point at (x, y)	$f \circ g$ or	composite of
~	is approximately equal to	$ \vec{\mathbf{v}} $	magnitude of the vector $\mathbf{\tilde{v}}$	$\int f(g(x)) dx$	functions f and g
{ }	set notation	a b	inner product of	f ^b	indefinite integral
t , +	plus or minus		vectors a and b	$\int_a f(x) dx$	definite integral
.	minus or plus	$\mathbf{\overline{a}} \times \mathbf{\overline{b}}$	cross product of	α	alpha
$\triangle ABC$	triangle <i>ABC</i>	0	base of patural	β	beta
RTS	arc <i>RTS</i>	C	logarithms;	Ŷ	gamma
∠.ABC	angle ABC		≈ 2.718	Δ or δ	delta
m∠ABC	measure of angle	<i>n</i> !	<i>n</i> factorial	ε	epsilon
	ABC	ln x	logarithm of <i>x</i> with base <i>e</i> ; natural	θ	theta
AB	measure of line		logarithm	λ	lambda
ĀR	line segment 4B	$\log_a x$	logarithm of <i>x</i> with	μ	mu
r	the absolute value	logy	base <i>a</i>	π	pi
	of x	$\log x$	with base 10; common logarithm	σ	sigma; standard deviation
x^n	the <i>n</i> th power of <i>x</i>	lim	the limit as x	\sum	sigma; summation
\sqrt{x}	the square root	$x \rightarrow a$	approaches a	4	symbol
-	of x	P(n, r)	number of	φ	pill omore: angular
$\sqrt[n]{x \text{ or } x^{\frac{1}{n}}}$	the nth root of x		objects, taken r	ω	velocity
[[X]]	greatest integer		at a time		
	not greater than x	C(n, r)	number of combinations of		
A^{-1}	inverse of matrix A		n objects, taken r	1	
a_{ij}	the element of	\overline{V}	at a time		
	the <i>j</i> th column of matrix <i>A</i>	Λ	arithmetic mean		
$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$	the determinant				
,	$a_1 b_2 - a_2 b_1$				
$\sin^{-1} x$	arcsin <i>x</i>				

