TRIGONOMETRIC IDENTITIES

Reciprocal Identities

$\sin \theta=\frac{1}{\csc \theta}$ $\csc \theta=\frac{1}{\sin \theta}$
$\cos \theta=\frac{1}{\sec \theta}$ $\sec \theta=\frac{1}{\cos \theta}$
$\tan \theta=\frac{1}{\cot \theta}$
$\cot \theta=\frac{1}{\tan \theta}$

Quotient Identities

$\frac{\sin \theta}{\cos \theta}=\tan \theta \quad \frac{\cos \theta}{\sin \theta}=\cot \theta$

Pythagorean Identities

$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\tan ^{2} \theta+1=\sec ^{2} \theta$
$1+\cot ^{2} \theta=\csc ^{2} \theta$

Cofunction Identities

$\sin \theta=\cos \left(90^{\circ}-\theta\right)$	$\cos \theta=\sin \left(90^{\circ}-\theta\right)$
$\tan \theta=\cot \left(90^{\circ}-\theta\right)$	$\cot \theta=\tan \left(90^{\circ}-\theta\right)$
$\sec \theta=\csc \left(90^{\circ}-\theta\right)$	$\csc \theta=\sec \left(90^{\circ}-\theta\right)$

Sum and Difference Identities

$$
\begin{aligned}
& \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
& \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
& \tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}
\end{aligned}
$$

Opposite-Angle Identities

$\sin (-A)=-\sin A \quad \cos (-A)=\cos A$

Double-Angle Identities

$$
\begin{aligned}
& \sin 2 \theta=2 \sin \theta \cos \theta \\
& \begin{aligned}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
& =2 \cos ^{2} \theta-1 \\
& =1-2 \sin ^{2} \theta
\end{aligned}
\end{aligned}
$$

$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

Half-Angle Identities

$\sin \frac{\alpha}{2}= \pm \sqrt{\frac{1-\cos \alpha}{2}}$
$\cos \frac{\gamma}{2}= \pm \sqrt{\frac{1+\cos \alpha}{2}}$
$\tan \frac{\alpha}{2}= \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}, \cos \alpha \neq-1$

Symmetry Identities

The following trigonometric identities hold for any integer k and all values of A.

Case 1: $\sin \left(A+360 k^{\circ}\right)-\sin A$ $\cos \left(A+360 k^{\circ}\right)=\cos A$

Case 2: $\sin \left(A+180^{\circ}(2 k-1)\right)=-\sin A$ $\cos \left(A+180^{\circ}(2 k-1)\right)=-\cos A$

Case 3: $\sin \left(360 k^{\circ}-A\right)=-\sin A$ $\cos \left(360 k^{\circ}-A\right)=\cos A$

Case 4: $\quad \sin \left(180^{\circ}(2 k-1)-A\right)=\sin A$ $\cos \left(180^{\circ}(2 k-1)-A\right)=-\cos A$

FORMULAS

CHAPTER 1 (pp. 4-65)
Slope $m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$

CHAPTER 2 (pp. 66-125)
Determinant

$$
\begin{aligned}
& \left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1} \\
& \left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & c_{2} \\
b_{3} & c_{3}
\end{array}\right|- \\
& \quad b_{1}\left|\begin{array}{ll}
a_{2} & c_{2} \\
a_{3} & c_{3}
\end{array}\right|+c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right|
\end{aligned}
$$

Inverse of a Second Order Matrix

$$
\left.\left.A^{1}=\frac{1}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|} \right\rvert\, \begin{array}{rr}
b_{2} & -b_{1} \\
-a_{2} & a_{1}
\end{array}\right]
$$

CHAPTER 3 (pp. 126-203)
Direct Variation $y=k x^{n}, n>0$
Inverse Variation
$x^{n} y=k$ or $y=\frac{k}{x^{n}}, n>0$
Joint Variation $y=k x^{n} z^{n}$, where $x \neq 0, z \neq 0$, and $n>0$

CHAPTER 4 (pp. 204-273)
Quadratic Formula
$x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$

CHAPTER 5 (pp. 276-341)
Trigonometric Ratios
$\sin \theta=\frac{\text { side opposite }}{\text { hypotenuse }}$
$\cos \theta=\frac{\text { side adjacent }}{\text { hypotenuse }}$
$\tan \theta-\frac{\text { side opposite }}{\text { side adjacent }}$
Inverse Trigonometric Ratios
$\csc \theta=\frac{1}{\sin \theta}$ or $\frac{\text { hypotenuse }}{\text { side adjacent }}$
$\sec \theta=\frac{1}{\cos \theta}$ or $\frac{\text { hypotenuse }}{\text { side adjacent }}$
$\cot \theta=\frac{1}{\tan \theta}$ or $\frac{\text { side adjacent }}{\text { side opposite }}$

Trigonometric Functions of an Angle in Standard Position
$\sin \theta=\frac{y}{r} \quad \csc \theta=\frac{r}{y}$
$\cos \theta=\frac{x}{r} \quad \sec \theta=\frac{r}{x}$
$\tan \theta=\frac{y}{x} \quad \cot \theta=\frac{x}{y}$
Law of Sines

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Area of a Triangle

$K=\frac{1}{2} b c \sin A$
$K=\frac{1}{2} c^{2} \frac{\sin A \sin B}{\sin C}$

Law of Cosines

$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
Hero's Formula
$K=\sqrt{s(s-a)(s-b)(s-c)}$, where $s=\frac{1}{2}(a+b+c)$

CHAPTER 6 (pp. 342-419)
Degree/Radian Conversion
1 radian $=\frac{180}{\pi}$ degrees
1 degree $=\frac{\pi}{180}$ radians
Length of an Arc $s=r \theta$
Area of a Circular Sector
$A=\frac{1}{2} r^{2} \theta$
Angular Velocity $\omega=\frac{\theta}{t}$
Linear Velocity $\nu=r \frac{\theta}{t}$

CHAPTER 7 (pp. 420-483)
Distance from a Point to a Line
$d=\frac{A x_{1}+B y_{1}+C}{ \pm \sqrt{A^{2}+B^{2}}}$

CHAPTER 8 (pp. 484-549)
Magnitude of ${\overrightarrow{P_{1} P}}_{2}$ in Two Dimensions

$$
\mid \overrightarrow{{\mu_{1} P_{2}} \mid=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \text {. }}
$$

Magnitude of ${\vec{P}{ }_{1}}_{2}$ in Three Dimensions
$\left|\overline{P_{1} \bar{P}_{2}}\right|=$
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
Inner Product of Vectors in a Plane $\stackrel{\rightharpoonup}{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a_{1} b_{1}+a_{2} b_{2}$

Inner Product of Vectors in Space $\overline{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$

Cross Product of Vectors in Space
Cross Product of Vectors in Space
$\stackrel{\rightharpoonup}{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\left|\begin{array}{ll}a_{2} & a_{3} \\ b_{2} & b_{3}\end{array}\right| \stackrel{\rightharpoonup}{\mathbf{i}}-\left|\begin{array}{ll}a_{1} & a_{3} \\ b_{1} & b_{3}\end{array}\right| \stackrel{\rightharpoonup}{\mathbf{j}}+$

$$
\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \overrightarrow{\mathbf{k}}
$$

Parametric Equations for the Path of a Projectile
$x=t|\overrightarrow{\mathbf{v}}| \cos \theta$ and
$y=t \left\lvert\, \overrightarrow{\mathbf{v}} \sin \theta-\frac{1}{2} g t^{2}\right.$
CHAPTER 9 (pp. 552-613) Distance Formula in Polar Plane $P_{1} P_{2}=$
$\sqrt{r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{2}-\theta_{1}\right)}$
Conversion from Polar Coordinates to Rectangular Coordinates $x=r \cos \theta, y=r \sin \theta$

Conversion from Rectangular Coordinates to Polar Coordinates
$r=\sqrt{x^{2}+y^{2}}$
$\theta=\operatorname{Arctan} \frac{y}{x}$, when $x>0$
$\theta-\operatorname{Arctan} \frac{y}{x}+\pi$, when $x<0$
Absolute Value of a Complex
Number
$|a+b \boldsymbol{i}|=\sqrt{a^{2}+b^{2}}$
Polar Form of a Complex Number $r(\cos \theta+\boldsymbol{i} \sin \theta)$

Product of Complex Numbers in Polar Form
$r_{1}\left(\cos \theta_{1}+\boldsymbol{i} \sin \theta_{1}\right)$.
$r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)=$
$r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+\boldsymbol{i} \sin \left(\theta_{1}+\theta_{2}\right)\right]$
(continued)

FORMULAS

Quotient of Complex Numbers

 in Polar Form$$
\begin{aligned}
& \frac{r_{1}\left(\cos \theta_{1}+\boldsymbol{i} \sin \theta_{1}\right)}{r_{2}\left(\cos \theta_{2}+\boldsymbol{i} \sin \theta_{2}\right)}- \\
& \quad \frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+\boldsymbol{i} \sin \left(\theta_{1}-\theta_{2}\right)\right]
\end{aligned}
$$

De Moivre's Theorem
$[r(\cos \theta+i \sin \theta)]^{n}=$
$r^{n}(\cos n \theta+\boldsymbol{i} \sin n \theta)$

CHAPTER 10 (pp. 614-693)
Distance Formula for Two Points
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Midpoint of a Line Segment
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Rotation Equations
$x=x^{\prime} \cos \theta+y^{\prime} \sin \theta$
$y=-x^{\prime} \sin \theta+y^{\prime} \cos \theta$

Angle of Rotation

$\theta=\frac{\pi}{4}$, if $A=C$ or $\tan 2 \theta=\frac{B}{A-C}$, if
$A \neq C$

CHAPTER 11 (pp. 694-755)
Exponential Growth or
Decay Formulas
$N=N_{0}(1+r)^{t} \quad N=N_{o} e^{k t}$
Compound Interest Formula
$A=P\left(1+\frac{r}{n}\right)^{n t}$
Continuously Compounded
Interest Formula
$A=P e^{r t}$
Change of Base Formula
$\log _{a} n=\frac{\log _{b} n}{\log _{b} a}$
Doubling Time $t=\frac{\ln 2}{k}$

CHAPTER 12 (pp. 758-835)
nth Term of an Arithmetic Sequence $a_{n}=a_{1}+(n-1) d$

Sum of an Arithmetic Sequence

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
$$

nth Term of a Geometric Sequence $a_{n}=a_{1} r^{n-1}$

Sum of a Finite Geometric Sequence
$S_{n}=\frac{a_{1}-a_{1} r^{r}}{1-r}$
Sum of an Infinite Geometric Series
$S_{n}=\frac{a_{1}}{1-r}$

Euler's Formula

$\boldsymbol{e}^{i \alpha}=\cos \alpha+i \sin \alpha$

CHAPTER 13 (pp. 836-887)
Definitions of Permutations

$$
\Gamma(n, n)=n!\quad P(n, r)=\begin{gathered}
n! \\
(n-r)!
\end{gathered}
$$

Definition of Combination
$C(n, r)=\frac{n!}{(n-r)!r!}$
Permutation of n objects with repetitions (p alike and q alike)
$\frac{n!}{p!q!}$

Circular Permutations of n Objects
$\frac{n!}{n}$ or $(n-1)$!
Probability of I wo Independent Events
$P(A$ and $B)=P(A) \cdot P(B)$
Probability of Two Dependent
Events
$P(A$ and $B)=P(A) \cdot P(B$ following $A)$
Probability of Mutually Exclusive Events
$P(A$ or $B)=P(A)+P(B)$
Probability of Inclusive Events $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Conditional Probability

$P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$ where $P(B) \neq 0$

CHAPTER 14 (pp. 888-939)
Arithmetic Mean $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
Mean of the Data in Frequency
Distribution
$\bar{X}=\frac{\sum_{i=1}^{k}\left(f_{i} \cdot X_{i}\right)}{\sum_{i=1}^{k} f_{i}}$

Semi-Interquartile Range
$Q_{R}=\frac{Q_{3}-Q_{1}}{2}$
Mean Deviation
$M D=\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|$
Standard Deviation
$\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$
Standard Deviation of the Data in a Frequency Distribution

Standard Error of the Mean
$\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{N}}$

CHAPTER 15 (pp. 941-983)

Constant Multiple of a Power
Rule for Derivatives
If $f(x)=c x^{n}$, where c is a constant and n is a rational number, then $f^{\prime}(x)=c n x^{n-1}$.

Constant Multiple of a Power

Rule for Antiderivatives
If $f(x)=k x^{n}$, where n is a rational number other than -1 and k is a constant, the antiderivative is
$F(x)=k \cdot \frac{1}{n+1} x^{n+1}+C$.
Definite Integral
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ where
$\Delta x-\frac{b-a}{n}$
Fundamental Theorem of Calculus
$\int_{a}^{b} f(x) d x=F(b)-F(a)$, where
$f(x)$ is the antiderivative of $f(x)$.

SYMBOLS

	is equal to	$\sin ^{2} \theta$	$(\sin \theta)^{2}$	M_{d}	median
\neq	is not equal to	∞	infinity	$\sigma_{\bar{X}}$	standard error of
$<$	is less than	i	$\sqrt{-1}$		the mean
\leq	is less than or	r cis θ	$r(\cos \theta+\boldsymbol{i} \sin \theta)$	MD	mean deviation
	equal to	$\stackrel{\rightharpoonup}{\mathbf{v}} \text { or } \overrightarrow{A B}$	a vector or	$f(x)$	f of x or the value of function f at x
<	is not less than		directed line		
$>$	is greater than		segment	$f(x)$	f prime of x or the derivative of $f(x)$
\geq	is greater than or equal to	x, y	vector with initial point at origin and terminal	$\frac{d y}{d x}$	derivative of y
中	is not greater than		point at (x, y)	$\begin{aligned} & f \circ g \text { or } \\ & f(g(x)) \end{aligned}$	composite of functions f and g
\approx	is approximately equal to	$\|\stackrel{\rightharpoonup}{\mathbf{v}}\|$	magnitude of the vector $\overrightarrow{\mathbf{v}}$	$\int f(x) d x$	indefinite integral
\{ $\}$	set notation	$\stackrel{\rightharpoonup}{\mathbf{a}} \cdot \stackrel{\rightharpoonup}{\mathbf{b}}$	inner product of vectors \mathbf{a} and \mathbf{b}	$\int_{a}^{b} f(x) d x$	definite integral
	plus or minus	$\overline{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$	cross product of	α	alpha
干	minus or plus		vectors \mathbf{a} and \mathbf{b}	β	beta
$\triangle A B C$	triangle $A B C$	e	base of natural		
RTS	arc RTS		$\begin{aligned} & \text { logarithms; } \\ & \approx 2.718 \end{aligned}$		gamma delta
$\angle A B C$	angle $A B C$	$n!$	n factorial		
$m \angle A B C$	measure of angle			ε	epsilon
	$A B C$	$\ln x$	logarithm of x with base e; natural	θ	theta
$A B$	measure of line segment AB		logarithrin	λ	lambda
	line segment $A B$	$\log _{a} x$	logarithm of x with base a	μ π	mu pi
$\|x\|$	the absolute value of x	$\log x$	logarithm of x with base 10 ; common logarithm	Σ	sigma; standard deviation
x^{n}	the nth power of x	$\lim _{x \rightarrow a}$	the limit as x	\sum	sigma; summation symbol
\sqrt{x}	the square root of x	$x \rightarrow a$ $P(n, r)$	approaches a number of	ϕ	phi
$\begin{aligned} & \sqrt[n]{x} \text { or } x \\ & \llbracket x \rrbracket \end{aligned}$	the nth root of x greatest integer		permutations of n objects, taken r at a time	ω	omega; angular velocity
A^{-1}	not greater than x inverse of matrix A	$C(n, r)$	number of combinations of n objects, taken r at a time		
$a_{i j}$	the element of the i th row and the j th column of matrix A	\bar{X}	X bar or arithmetic mean		
$\left\|\begin{array}{ll} a_{1} & b_{1} \\ a_{2} & b_{2} \end{array}\right\|$	the determinant $a_{1} b_{2}-a_{2} b_{1}$				
$\sin ^{-1} x$	$\arcsin x$				

